
[ 1 ]

www.it-ebooks.info

http://www.it-ebooks.info/


Raspberry Pi Projects for Kids 
Second Edition

Leverage the power of programming to use the 
Raspberry Pi to create awesome games

Daniel Bates

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/


Raspberry Pi Projects for Kids 
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Second edition: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-152-5

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/


Credits

Author
Daniel Bates

Reviewers
Ed Baker

Colin Deady

Ian McAlpine

Commissioning Editor
Priya Singh

Acquisition Editors
Harsha Bharwani

Sonali Vernekar

Content Development Editor
Nikhil Potdukhe

Technical Editor
Rohith Rajan

Copy Editors
Sonia Cheema

Merilyn Periera

Project Coordinator
Akash Poojary

Proofreaders
Simran Bhogal

Safis Editing

Indexer
Tejal Soni

Graphics
Sheetal Aute

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/


About the Author

Daniel Bates is a computer science researcher at the University of Cambridge.  
His day job involves inventing designs for future mobile phone processors and  
when he gets home, he likes playing games or working on one of his coding projects 
(or both!). Daniel has been a volunteer for the Raspberry Pi Foundation since 2011 
and is enthusiastic about introducing new people to computing. He has previously 
written Instant Minecraft: Pi Edition Coding How-to and Raspberry Pi Projects for Kids 
(First Edition), both published by Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/


About the Reviewers

Ed Baker graduated with a BSc in physics from Imperial College, London,  
in 2007 and somehow ended up working in the Entomology Department of the 
Natural History Museum shortly after. His work focuses on how technology, both 
hardware and software, can improve the way research is performed, from field data 
collection to final publication. Outside the technology world, he is a specialist on 
stick insects, cockroaches, and grasshoppers.

Recently, his work has focused on automated acoustic and environmental monitoring, 
protocols for sensor networks, and starting the biodiversity technology company 
http://www.infocology.co.uk.

Ed's first book, provisionally titled Arduino for Biologists, will be published in 2015 
with Pelagic Publishing.

I would like to thank Philippa for believing that the writing and 
'tinkering' would bring reward in the end.

www.it-ebooks.info

http://www.infocology.co.uk
http://www.it-ebooks.info/


Colin Deady's career in IT started in the late 1990s, when he discovered software 
testing ("they want me to break it?"), having previously fallen in love with computers 
when his parents brought him and his brother a ZX81 and ZX Spectrum+ in the 1980s 
and later an Amiga 1200 in the early 1990s. With over 15 years of experience in testing, 
he works as a Technical Test Manager, emphasizing the benefits of test automation and 
extolling the virtues of agile using Kanban and Behavior-Driven Development to great 
effect: define behaviors, then test early, test often. He combines BDD with a fix early, 
fix often approach that he terms Zero Known Defects.

Colin was one of the technical reviewers for Tim Cox's excellent Raspberry Pi Cookbook 
for Python Programmers, by Packt Publishing, and has written several articles for The 
MagPi, a community magazine for the Raspberry Pi. He has also reviewed and edited 
many more, building up extensive knowledge on this tiny platform.

He currently runs a blog related to all things Raspberry Pi, which can be found at 
www.rasptut.co.uk.

Ian McAlpine was first introduced to computers when he used his school's 
Research Machines RML 380Z and his physics teacher's Compukit UK101. This was 
followed by a Sinclair ZX81 and then a BBC Micro Model A, which he still has to 
this day. The interest he has in computers resulted in an MEng degree in electronic 
systems engineering from Aston University and an MSc in information technology 
from the University of Liverpool. Ian is currently a product expert in the Business 
Intelligence and Analytics Competence Center at SAP Labs in Vancouver, Canada.

The introduction of the Raspberry Pi rekindled his desire to "tinker" but also provided 
him with an opportunity to give back to the community. Ian is also a very active 
volunteer, who works for The MagPi, a monthly magazine for the Raspberry Pi 
community, which you can read online or download for free from www.themagpi.com. 
He also holds an amateur radio license (callsign VE7FTO) and is a communications 
volunteer for his local community emergency management office. He was a technical 
reviewer for Raspberry Pi Cookbook for Python Programmers, by Packt Publishing.

I would like to thank my darling wife, Louise, and my awesome 
kids, Emily and Molly, who've allowed me to disappear into my 
office and have, consequently, trained our dog to fetch me!

www.it-ebooks.info

http://www.rasptut.co.uk/
http://www.themagpi.com
http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


[ i ]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Raspberry Pi	 1

Materials needed	 2
Power supply	 3
Storage	 4
Input	 5
Video	 6
Network	 7

Preparing the SD card	 8
Starting up the Raspberry Pi	 11
Using your Raspberry Pi	 14

The command line	 15
Updating and installing new software	 17
Other uses of the Raspberry Pi	 18
Troubleshooting common issues	 19

Summary	 20
Chapter 2: Animating with Scratch	 21

Scratch	 21
Hello world!	 23
Code tour	 24
Some more interesting movements	 25
Setting the scene	 26
Another way to animate	 28

Interactive animation	 29
Variables	 30
Movement	 32

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ ii ]

Keeping count	 33
If-then-else	 34

Summary	 36
Chapter 3: Making Your Own Angry Birds Game	 37

Creating a character	 38
Creating a level	 40
Moving the character	 41

Initialization	 42
Moving the character with the keyboard	 42
Launching the character!	 44
Flight	 45

Adding physics	 46
Gravity	 46
Bouncing	 46

Ending the game	 47
Scoring	 48
Extensions	 51
Summary	 52

Chapter 4: Creating Random Insults	 53
Python	 53

Python programming	 55
The program we're going to use to generate phrases	 55

Lists	 56
Adding randomness	 57
Creating phrases	 58

Making mischief	 59
Dictionaries	 59
Loops	 60
Conditionals	 61
Functions	 62

Complete code listing	 64
Summary	 65

Chapter 5: Testing Your Speed	 67
Materials needed to make your own controller	 67
Creating the game controller	 68

The controller base	 69
Adding buttons	 69
Connecting to the Raspberry Pi	 71

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iii ]

Coding the game	 72
Random behavior	 73
Using the controller	 74
Adding a time limit	 75
Bringing it all together	 77

Complete code listing	 79
The keyboard version	 80
What's next?	 81
Summary	 82

Chapter 6: Making an Interactive Map of your City	 83
Hello world!	 84

Tkinter	 84
Writing the program	 84

Getting a map	 87
No Internet? No problem!	 87
Google Maps	 87
Generating the address	 88
Downloading an image	 89
Using an image	 90

Adding markers	 92
Detecting mouse clicks	 92
Reacting to mouse clicks	 93

Adding labels	 94
Basic labels	 94
Pop-up windows	 95

Code listing	 98
Extensions	 100

Layout	 101
Additional widgets	 101

Checkbutton	 101
Frame and LabelFrame	 102
Listbox	 102
Menu	 102
Menubutton	 103
Message	 103
OptionMenu	 103
Radiobutton	 104
Scale	 104
Spinbox	 104

Summary	 105

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iv ]

Chapter 7: Building Beats with Sonic Pi	 107
Sonic Pi	 107
Getting started with Sonic Pi	 108
Creating a tune	 109
New sounds	 111
A real tune	 112

Adding rhythm	 115
Bass line	 116
More fun	 119

Code listing	 120
Summary	 122

Index	 123

www.it-ebooks.info

http://www.it-ebooks.info/


[ v ]

Preface
The Raspberry Pi is a credit card-sized computer designed to make computing 
accessible to all. With the trend towards making computers easier and easier to use, 
the art of programming has been in decline. Programming is a powerful tool that lets 
us tell the computer exactly what we want to do. In much the same way as we use 
a hammer or screwdriver to help us with a physical task, we can use programming 
to help us with a mental task. The Raspberry Pi exposes programming software to 
make it as easy as possible to get started.

After introducing the Raspberry Pi computer and showing you how to set it up, 
this book will guide you through six separate mini-projects. Each project is fun, 
visual, and has plenty of scope for personalization. By the end of this book, you will 
understand and be able to use three different programming languages, and will be 
able to use them to build creative programs of your own.

What this book covers
Chapter 1, Getting Started with Raspberry Pi, shows you what Raspberry Pi is and how 
you can get one set up and ready to use.

Chapter 2, Animating with Scratch, introduces the Scratch programming language and 
uses it to create simple (and not-so-simple) animations.

Chapter 3, Making Your Own Angry Birds Game, teaches you how to make your very 
own computer game using the Scratch programming language.

Chapter 4, Creating Random Insults, explores how random funny phrases can be 
generated using the Python programming language.

Chapter 5, Testing Your Speed, helps you to connect electronic components to your 
Raspberry Pi to create a physical game controlled by your computer code written  
in Python.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ vi ]

Chapter 6, Making an Interactive Map of Your City, teaches you more about Python and 
shows you how to access Google Maps to create a personal map of your area.

Chapter 7, Building Beats with Sonic Pi, introduces the Sonic Pi application and  
shows you how the programming concepts learned so far can be applied to  
the creation of music.

What you need for this book
All the projects in this book require Raspberry Pi and all the necessary peripherals 
(listed at the beginning of Chapter 1, Getting Started with Raspberry Pi). Chapter 5, 
Testing Your Speed, adds simple electronic components, listed at the beginning of  
that chapter. Chapter 7, Building Beats with Sonic Pi, requires headphones or speakers.

Who this book is for
This book is designed to help adults and children jump into creative coding using the 
Raspberry Pi. You will need patience, a sense of adventure, and a vivid imagination!

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text are shown as follows: "Be very careful when using the  
sudo command."

A block of code is set as follows:

def count(maximum):
    value = 0
    while value < maximum:
        value = value + 1
        print "value =", value

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

def count(maximum):
    value = 0
    while value < maximum:
        value = value + 1
        print "value =", value

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ vii ]

Any command-line input or output are written as:

sudo apt-get upgrade

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Select 
Raspbian and click on Install."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/


Preface

[ viii ]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/1525OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/1525OS_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/1525OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/


[ 1 ]

Getting Started with 
Raspberry Pi

In the mid-2000s, some of the staff at the University of Cambridge noticed that there 
were fewer students applying to study computer science each year, and that they 
didn't have very much experience. Something had to be done about this situation. 
The answer was the Raspberry Pi: a small, inexpensive computer which makes 
programming as accessible and as fun as possible. The idea is that students can play 
with the Raspberry Pi in their spare time, and in the process, learn valuable core 
computer science skills. Since its creation, many other groups have discovered how 
useful the Raspberry Pi can be, including schools, adults who want to brush up on 
their skills with technology, and electronics hobbyists.

This chapter describes how to get a Raspberry Pi computer up and running. Once 
this is done, the Pi behaves just like any other ordinary computer, and is capable 
of standard tasks, such as browsing the web and playing games. We will learn in 
later chapters that the Raspberry Pi is also capable of some things which ordinary 
computers can't easily do.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 2 ]

The following image shows an example of the Raspberry Pi that we will be using in 
the rest of the book:

Materials needed
Any model of the Raspberry Pi will work for the projects used in this book. The 
preceding image shows a Raspberry Pi Model B+, with four USB ports and a 
network connection. The Model A+ (with one USB port and no network connection) 
will also work, but a USB hub (which is described later) will be needed to allow both 
a keyboard and mouse to be used at the same time.

The Models A+ and B+ replace the older Models A and B, and have the same 
capabilities, but neater designs. You can identify the Plus models by looking at the 
mounting holes surrounded by metal. The Plus (+) models have four mounting holes 
in a rectangle, whereas the previous models have two or zero mounting holes. In the 
preceding image, two mounting holes are in the corners at the left end of the board, 
and the other two mounting holes are on the mid-right of the board.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 3 ]

The Raspberry Pi 2 looks almost the same as Model B+, but has a faster processor. 
This is not important for the projects in this book. Along with a Raspberry Pi 
computer, you will need other peripherals. In order to keep costs down, the 
Raspberry Pi was designed to work with devices that people already owned; you 
may find many of these components around your house already. Just make sure 
they're not in use before you take them!

http://elinux.org/RPi_VerifiedPeripherals is a useful website 
to check whether a particular device will work with the Raspberry Pi.

Power supply
The Raspberry Pi requires a micro-USB connection, which is capable of supplying at 
least 700 mA (or 0.7A) at 5V. Power supplies, which can give 1000 mA or more are 
available (and will be more reliable), but it must supply exactly 5 V. Most standard 
mobile phone chargers are suitable for this purpose, and have their capabilities written 
on them, so you can check. Do not attempt to power your Pi from the USB port of 
another computer or hub; they are often incapable of supplying the required current.

www.it-ebooks.info

http://elinux.org/RPi_VerifiedPeripherals
http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 4 ]

Storage
The operating system and files of Raspbian are stored on an SD card, which is similar 
to what you may find in a digital camera. The Raspberry Pi models A and B use a 
standard-sized SD card, while the A+, B+ and Pi 2 models use smaller microSD cards. 
You will need at least 4 GB of space (preferably 8 GB or more). The Raspberry Pi 
Foundation sells very affordable 8 GB SD cards with the operating system pre-installed, 
and these can be found at http://swag.raspberrypi.org/.

If you start with a blank SD card, you will also need a way of writing to it from 
another computer. Many computers have SD writers built in, but it is possible to  
buy USB dongles which do the job too.

www.it-ebooks.info

http://swag.raspberrypi.org/
http://www.it-ebooks.info/


Chapter 1

[ 5 ]

Input
For inputs, we will use a USB keyboard and mouse:

Keyboard

Mouse

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 6 ]

Video
We will use a monitor or a television with HDMI or DVI input, and a video  
cable connected from the Pi's HDMI port to the screen's input, as shown in the 
following figures. It is possible to connect to an older VGA or composite screen,  
but this is more complicated. Take a look at this website more information  
http://elinux.org/RPi_VerifiedPeripherals.

The following images show the display monitor and cables that you might use to 
connect the Pi to your monitor:

Monitor

DVI connector

www.it-ebooks.info

http://elinux.org/RPi_VerifiedPeripherals
http://www.it-ebooks.info/


Chapter 1

[ 7 ]

HDMI connector

Network
An Internet connection is not essential, but is very useful as it allows you to do more 
work directly on the Pi. The easiest approach is to use a wired Ethernet connection.

The following image shows an Ethernet connector that is used to connect the Pi to 
the Internet:

RJ-45 Ethernet Connector

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 8 ]

It is also possible to use a USB Wi-Fi dongle—you will need a powered USB hub to 
provide additional USB ports, and you should check whether the dongle is compatible 
with a Linux operating system. The following image shows an USB hub (unpowered):

USB multi-port hub

You may also like to put your Raspberry Pi in a case to protect it, though this is 
certainly not necessary. There are many different companies which make different 
styles of cases, so choose one that suits you, or you could even make your own from 
Lego or cards!

Preparing the SD card
The first thing we need to do is put an operating system on the SD card using 
another computer. You can buy SD cards with software preinstalled, but doing 
it yourself guarantees to get you the latest updates, and is also a useful learning 
experience. These instructions assume that you are using a computer running 
Microsoft Windows or Mac OS X. If you are using another operating system, or 
if you are having difficulties in setting up the SD card, detailed instructions are 
available online at http://www.raspberrypi.org/downloads.

www.it-ebooks.info

http://www.raspberrypi.org/downloads
http://www.it-ebooks.info/


Chapter 1

[ 9 ]

There is a Troubleshooting section at the end of the chapter if you get stuck.

The following steps show how you can install the OS on your Raspberry Pi:

1.	 Download the SD association's formatting tool, SD Formatter,  
from: http://www.sdcard.org/downloads/formatter_4/.

2.	 Download the latest version of the NOOBS (the offline installation) operating 
system collection from http://www.raspberrypi.org/downloads.

Insert the SD card into the SD card writer, as shown:

1.	 If the SD card writer is separate from your computer, plug it in.
2.	 Install and run SD Formatter. Select the SD card you just inserted, click on 

Option, then set FORMAT SIZE ADJUSTMENT to ON and click on OK. 
In this example, the SD card is shown as the G drive, but this will vary from 
computer to computer. Finally, click on Format.

Make absolutely sure that you have the right SD card selected. 
If it isn't, all the data will be lost from the formatted card.

www.it-ebooks.info

http://www.sdcard.org/downloads/formatter_4/
http://www.raspberrypi.org/downloads
http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 10 ]

The following screenshot shows the SD Formatter software:

3.	 Extract the contents of the NOOBS zip file to the SD card. How this is done 
will vary depending on the software you have installed, but will typically 
involve double-clicking on NOOBS.zip, clicking on Extract or Extract to..., and 
selecting the SD card as the destination. There is a lot to extract, so this will 
take a few minutes to complete.

4.	 On your taskbar (close to the clock) click on Safely remove/Eject the SD card 
and take it out of the SD writer, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 11 ]

Starting up the Raspberry Pi
Now, we can prepare the Raspberry Pi to start for the first time. Place it securely 
on a desk or in a case. Make sure it is not in danger of falling on the floor, and do 
not rest it on top of the bag in which it comes. We can start up the Raspberry Pi by 
performing these steps:

1.	 Plug the SD card, screen, keyboard, and mouse into the Raspberry Pi. Also, 
plug in the Ethernet cable, if you have one, as shown here:

2.	 Plug the power cable into the Raspberry Pi. The red power light should come 
on, and the green activity light should flash occasionally.

3.	 If necessary, adjust the screen settings to display the images from the 
Raspberry Pi's input.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 12 ]

4.	 You should see a selection of operating systems for you to install (shown in 
the following screenshot), each with a short description. This book relies on 
you having Raspbian installed, so select Raspbian and click on Install. You 
can always come back and select a different operating system later; I will 
explain how you can do this in the next section.

5.	 Wait! Operating systems are quite large, so installation will take a few 
minutes. You can sit back and read some of the tips shown to you,  
or read the next few steps in this book.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 13 ]

The following screen shows the Raspbian installation process, along with the 
tips shown while its being installed:

6.	 When the installation has finished, you should see a blue screen with a final 
list of options (shown in the following screenshot). This is the Raspberry 
Pi Software Configuration Tool. Most things should be set up the way we 
want them, but there are two useful settings to change. Select Enable Boot to 
Desktop/Scratch using the arrow keys and press Enter. Select the Desktop Log 
in option, and press Enter. You should now be back at the main menu. Next, 
select Internationalisation Options, and choose your preferred language and 
keyboard layout. Use the right arrow key to get to Finish and press Enter. 
You can return to this menu at any time by typing sudo raspi-config in a 
command line (refer to the next section for details):

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 14 ]

7.	 After a minute or so, the Raspberry Pi should finish rebooting, and you 
should see the Raspberry Pi desktop, as shown in the following screenshot. 
This might look familiar to you: you can double-click on the icons to start 
programs, or select them from a menu. We will mainly be using Scratch, 
Python and Sonic Pi in this book, but take a minute to explore what's 
available to you. In particular, there are several Python Games: these are the 
sort of things that are possible to develop after a little programming practice:

Using your Raspberry Pi
Now that your Raspberry Pi is up and running, you'll want to know how to keep it 
working properly, and how to customize it to your needs.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 15 ]

The command line
Most of the time, it will be possible to do what you want to do using the mouse, by 
clicking on different parts of the screen, but at some point, you might find yourself 
needing to use the command line, as shown in the following screenshot:

The command line is a completely text-based way to control a computer, and can be 
used to do just about anything which can be done by clicking and more. It is available 
on almost all computers, but is usually hidden away. Some computer users prefer 
using the command line because they can type faster than they can click the mouse!

Here is a very quick overview of some common commands. Open a command 
line by double-clicking on the LXTerminal icon on the desktop, and try these 
out. You will need to press Enter to tell the Raspberry Pi that your command has 
finished. A longer introduction, including information on how to watch a movie 
in the command line, can be found online at http://www.techradar.com/news/
computing/pc/1161712.

www.it-ebooks.info

http://www.techradar.com/news/computing/pc/1161712
http://www.techradar.com/news/computing/pc/1161712
http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 16 ]

The following are few of the most important commands that are used in LXterminal:

•	 ls (list): This command lists directory contents (directory is Linux's word for 
a folder.) This will show you all of the files and directories available to you in 
the current directory.

•	 cd <folderdirectory name> (change directory). This command allows  
you to move into another directory so you can see its contents, in the same 
way that double-clicking on a directory icon moves you into that directory. 
You can move through multiple levels of directories in one go by separating 
the folder directory names with a "/", and you can go up to the parent 
directory (the directory that contains the current directory) using the special 
.. directory name.

•	 man <program name> (open manual): This command will bring up lots of 
information about a particular program, including what it does and how 
to use it. Very useful if you forget how to use something! Try man ls to see 
some advanced information on the ls program we tried earlier, and press Q 
on the keyboard to quit. You can scroll through this information using the 
arrow keys or the Space Bar.

•	 <program name> (extra information): This is used to start the program, and 
optionally pass it some extra information. Try typing in scratch to start the 
Scratch program (we'll cover this in more detail in the next chapter), or if 
you are connected to the Internet, go to epiphany www.raspberrypi.org 
to open the Epiphany web browser and then go straight to the Raspberry Pi 
home page.

The Tab key can be used to automatically complete a word. Even if you 
have not completely finished typing in the name of a program or file 
or folder, try pressing Tab. If there is only one option available, which 
begins with the letters you have typed so far, the whole word will be 
completed for you. If there are multiple options (or none), nothing will 
change; you can press Tab again to show you a list of possibilities.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 17 ]

Updating and installing new software
If you want to install a program on your Raspberry Pi, you either need to download a 
version which is specifically for the Raspberry Pi, or use Raspbian's package system.

A package is a program or a part of a program, and many versions of Linux  
(including Raspbian) maintain a list of all the compatible packages, making it easy to 
keep all your software up to date. You can update to the latest version of this list if you 
have an Internet connection, by typing the following command in a command line:

sudo apt-get update

Be very careful when using the sudo command. It forces the 
Raspberry Pi to do exactly what you tell it to do, without checking 
to make sure that the command is sensible. The command is useful 
in situations like this, where we want to make changes to the 
installed programs, but it also allows you to delete essential files. 
Double-check your spelling before continuing.

You can search for available packages with keywords using the following command:

apt-cache search <keywords>

Try the following command, for example, to see a list of available free games. You 
could even try installing one (xbubble is good, for example):

apt-cache search game

The name of the package is the first word of the line, and you can install a package 
using the following command:

sudo apt-get install <package name>

To update all the installed packages to the latest available version, type the  
following command:

sudo apt-get upgrade

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 18 ]

Other uses of the Raspberry Pi
Although the Raspberry Pi was designed to get people interested in computing, its 
cost and power mean that it is also popular for other reasons. Since the Raspberry 
Pi is a general-purpose computer, it is capable of everything a traditional computer 
can do, just perhaps a little slower. There is a web browser (Epiphany), and word 
processors and web servers are available in the Pi that helps you with the basic 
computing needs . A common use for Raspberry Pi is as a media center, to watch 
films and view pictures.

There are many different operating systems included with the NOOBS package: if 
you have NOOBS installed, you can see them if you press Shift when the Raspberry 
Pi first starts to boot; you will get a screen similar to this:

This will take you back to the list of operating systems you saw earlier when you 
started your Raspberry Pi for the first time. Each operating system comes with  
a short description: there are a couple of different flavors of Linux, the very fast 
RISC OS, and two different media centers, OpenELEC and RaspBMC.

If you want to try out one of these operating systems, make sure you first back up all 
your data, as it will be erased when the new operating system is installed.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 19 ]

Troubleshooting common issues
One of the main strengths of the Raspberry Pi is its fantastic community. If you ever 
have any difficulties, consider stopping by the Raspberry Pi forums, which can be 
found at http://www.raspberrypi.org/forum/. Your question may have already 
been asked, and if not, there are thousands of enthusiastic Pi owners on hand to help. 
Some of the most common issues are covered here:

•	 My Raspberry Pi doesn't boot (only the red power light comes on): this  
suggests that the SD card was not written correctly. Try following the 
instructions again to copy an OS image onto your SD card, and if this  
fails, try a new SD card.

•	 My Raspberry Pi randomly restarts by itself: this is usually because the Pi is not 
receiving enough power. Double-check that your power supply is capable of 
supplying at least 700 mA (0.7A) at 5V. This should be written on the supply 
somewhere. Perhaps, try upgrading to a 1000 mA (1.0A) supply if you 
continue to have problems.
Also make sure that you do not have particularly power-hungry peripherals 
plugged into your Raspberry Pi. Some Wi-Fi dongles and keyboards with 
extremely bright LEDs can cause problems, for example.

•	 I can't enter my password on the login screen: nothing is shown when the 
password is entered (not even stars) to minimize the information that  
others can gain from seeing the screen. It is likely that the keys are still being 
recognized: try typing in the whole password blindly and pressing Enter.

•	 The display does not fill my screen or extends beyond the edges: this is because of 
the overscan settings. Many old televisions had cabinets which overlapped 
part of the screen, so images were given black borders to ensure that none 
of the picture was lost. Many modern monitors do not have this problem, 
however, so the black bars are just a nuisance. First, try enabling or disabling 
overscan by typing sudo raspi-config in a command line and selecting 
the appropriate option. If this still does not work, search the Internet for 
Raspberry Pi overscan troubleshooting for detailed guides.

•	 I can't see anything at all on the screen: if the Pi is definitely on, and the  
OK/ACT light is lit or flashing, try pressing 1, 2, 3, or 4 on your keyboard  
to select different video modes.

•	 My keyboard is behaving strangely: some wireless keyboards occasionally do 
not work as expected, for example, by registering double key presses or not 
noticing a key press at all. This should be fixed in the future by software 
updates, or you can always try another keyboard if you have one.

www.it-ebooks.info

http://www.raspberrypi.org/forum/
http://www.it-ebooks.info/


Getting Started with Raspberry Pi

[ 20 ]

Summary
In this chapter, we learned how to connect a Raspberry Pi computer, write its 
operating system to an SD card, and initiate all its components. We learned that  
the Raspberry Pi is capable of everything a normal computer can do (and more),  
and that it is targeted at programming.

In the next chapter, we will use one of the provided programming languages, such as 
Scratch, to create our own animations.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 21 ]

Animating with Scratch
In this chapter, we're going to use a programming language called Scratch to 
create a simple animation. Along the way, we'll visit many of the main concepts 
of programming languages, so if you understand everything that you learn in this 
chapter, you will be well equipped to start writing programs of your own.

Scratch
In this chapter, we will use Scratch to create our animation. Scratch is a programming 
language that has been specially designed so that you can make animations and 
games with ease. Version 1.4 of Scratch is pre-installed with the Raspbian OS but is 
also available on other computers. You can download it from http://scratch.mit.
edu/ if you ever want to run your programs away from your Raspberry Pi. Start up 
Scratch by opening Menu at the top of the screen, and navigating to Programming, 
and then Scratch.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

www.it-ebooks.info

http://scratch.mit.edu/
http://scratch.mit.edu/
http://www.it-ebooks.info/


Animating with Scratch

[ 22 ]

The following screenshot shows the layout of Scratch:

The following are its main sections. I'll mention the names of these sections 
throughout the next two chapters, so you might want to refer back to this page.

The following are the elements of Scratch, as shown in the preceding screenshot:

•	 Menu (1): This is where the options to save and load your projects are. If you 
ever want inspiration for projects, take a look at the provided examples by 
navigating to File | Open | Examples. Remember to save and back up your 
progress regularly!

•	 Sprite controls (2): Every picture in the game is called a sprite. These buttons 
allow you to copy, remove, grow, and shrink sprites. To use them, click on 
the button you want, and then click on the sprite you want to affect.

•	 Screen layout (3): Choose between a small Stage (see 4), a large Stage, and 
a fullscreen game. The small Stage is better for smaller screens as it allows 
more space for code.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 23 ]

•	 Stage (4): This is where you will see the effects of all your programming.
•	 Sprite list (5): All the sprites in your project are shown here, and you can 

easily add new pictures or change existing ones in it.
•	 Script area (6): Each sprite has a number of scripts attached to it, and they are 

shown in this area. Each script is a short piece of code that controls how the 
sprite behaves.

•	 Blocks (7): Each block is a programming command that can be connected to 
other blocks (similar to a jigsaw) to create scripts. Drag a block into the script 
area to use it, and then drop it next to another block in the script area to join 
the two.

•	 Block types (8): The blocks are separated into eight different categories, each 
having different roles in your programs.

Hello world!
Let's create a very simple program to show how easy it is to produce a visible result.

1.	 From the Control section, drag a when green flag clicked block into the 
script area. Then drag a forever block so that it connects to the bottom of the 
when green flag clicked block. Finally, from the Motion section, drag a turn 
15 degrees block into the middle of the forever block.

2.	 Once the blocks are connected, you can move them all around at the same 
time by clicking and dragging the topmost block. If you drag a block in the 
middle of a collection of blocks, you will get that block and all the blocks 
below it.

3.	 Click on the green flag present at the top-right corner of the screen to run  
the program.

The following screengrab graphically illustrates the preceding steps:

www.it-ebooks.info

http://www.it-ebooks.info/


Animating with Scratch

[ 24 ]

You should see the cat rotating. Your script should also be highlighted to show that 
it is active. You can change the rotation amount to any number you like to see the cat 
spin faster or slower—click on 15, seen in the preceding code block, and type in a new 
number. You can even choose a negative number, and the cat will spin in the opposite 
direction. Click on the red stop sign in the top-right corner to stop your program.

Now, I'll describe how the Raspberry Pi understands your program and knows 
what to do. It understands that a script should start when the green flag is clicked 
on because this is the top block. As soon as this has happened, it moves on to the 
next block, forever. Everything inside the forever block will execute repeatedly 
until you tell it to stop. In this case, we have told the Raspberry Pi that we want to 
continuously rotate the cat, and this is what we see. You can see that no blocks can 
be attached to the bottom of the forever block. If an action keeps on going forever, no 
later commands will ever run.

Code tour
There are several types of code blocks available if you want to continue 
experimenting before we start working on the animation. A full description can be 
found online at http://info.scratch.mit.edu/Support/Reference_Guide_1.4. 
A quick tour of the code blocks is as follows:

•	 Motion: This allows us to control where a sprite is on the screen and which 
direction it is facing. Its options include rotating, moving to any position, and 
moving in the direction that the sprite is facing.

•	 Control: This allows us to choose when other blocks of code should run. In 
the preceding example, we saw how to decide when a script should start and 
how to repeat a block; however, it is also possible to execute a block only if a 
given condition is true.

•	 Looks: These enable us to decide what a sprite will look like. Each sprite can 
have multiple images or costumes associated with it, and these blocks can 
be used to switch between the two. It is also possible for the sprites to talk or 
change in size or color.

•	 Sensing: This enables us to allow a sprite to detect its surroundings.
•	 Sound: This enables us to play sound. You can add new sounds from the 

Sounds tab in the script area.
•	 Operators: These are simple mathematical functions, such as add and 

subtract. Note that some of the blocks are of different shapes; they show 
which blocks fit together and will be important later.

www.it-ebooks.info

http://info.scratch.mit.edu/Support/Reference_Guide_1.4
http://www.it-ebooks.info/


Chapter 2

[ 25 ]

•	 Pen: This enables us to allow a sprite to draw a line to show where it has been.
•	 Variables: These allow us to give names to pieces of information so that  

they can be accessed from multiple places. We will go into more detail  
on this later in the chapter.

If you ever add a block which you no longer want, you can either drag it back to the 
Blocks area, or right-click on it and select delete.

Some more interesting movements
A rotating cat is fun, but isn't particularly interesting, is it? Let's see if we can do 
something a little better.

1.	 Drag a move 10 steps block from the Motion section and place it anywhere 
inside your existing forever block. The cat should now move in a circle when 
you click on the green flag, rather than just spinning on the spot.

2.	 Adjust the numbers in the move and rotate blocks until you are happy with 
the cat's movement. A larger number in the move block will make the circle 
larger and the motion faster. A smaller number in the rotate block will also 
make the circle larger, but this time it will take longer to complete a rotation. 
If the cat moves to a position you don't like, you can always drag it around 
on the Stage.

3.	 If you like the path the cat is taking, but think it is moving too quickly, you 
might like to try adding in a wait 1 secs block (from the Control section) 
inside your forever block, and reducing its number to something very small, 
such as 0.01. I find the following to be a good combination:

4.	 Now, cats don't usually move around in circles like this, so let's choose 
something a little more appropriate. At the top of the script area, click on  
the Costumes tab, then click on Import. You should see a whole selection  
of different images to use, including animals, people, and things.

www.it-ebooks.info

http://www.it-ebooks.info/


Animating with Scratch

[ 26 ]

5.	 Choose an image of something that you think would be more likely to move 
in the circular motion you created, such as a fish, bird, or an airplane.

6.	 Click on OK when you're happy with your selection, and you will be 
returned to the main Scratch screen.

7.	 You should now be able to see the image you chose, and also a couple of 
slightly different versions of the cat image.

8.	 We won't need the cat images anymore; remove them by clicking on the 
small X symbol next to each one.

Setting the scene
We now have an image flying around in empty space. Let's add a background to 
make it look a bit better.

1.	 In the sprite list, on the left-hand side, you will find a special sprite called 
Stage. This serves as the background of the animation. Click on it, and the 
script area will update to show you information on the Stage. You should see 
that there is one available background simply called background1, and it is a 
white rectangle (if you don't see this, click on the Backgrounds tab at the top 
of the script area).

2.	 Just like we did before, click on Import, and choose a background that you 
think suits your sprite.

3.	 When you've finished, click on X next to the white background and you 
should be able to see your sprite and the new background on the stage. I 
chose an airplane as my sprite, so I've chosen a background which has some 
sky for it to fly around in:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 27 ]

4.	 As you can see, my plane looks like it has already crashed! I need to put it in a 
better position on the stage. If you also need to move your sprite to a different 
location, click on the sprite on the stage and drag it to a better position.

5.	 I also want to make my plane a little smaller. This can be done using the final 
button in the sprite controls section (as shown here). The button next to it can 
be used to make sprites larger.

6.	 Click on one of the buttons, and then click on your sprite repeatedly until it is 
the size you want it to be. You might want to adjust its position again when 
you are happy with its new size. Here's an illustration of my stage now:

As you can see, I've moved the plane into the sky, and made it smaller so that it 
appears to be further away.

www.it-ebooks.info

http://www.it-ebooks.info/


Animating with Scratch

[ 28 ]

Another way to animate
Remember how we earlier removed two slightly different cat images? They were there 
to allow a different way of animating, that is, switching between different images, or 
costumes. The following are the steps needed to switch between images and costumes:

1.	 At the top of the sprite list, click on the middle button. It says Choose new 
sprite from file when you hover your mouse cursor over it.

2.	 Find an image you like and that has multiple versions of it available, such as 
crab1-a and crab1-b. Choose the former, and click on OK.

3.	 Now, go into the Costumes tab and Import the second version of the  
same sprite, but this time, do not remove the costume that you already had. 
If your chosen sprite has more than two versions of it, repeat this process 
until you have all of them. You should see a screenshot similar to this one 
when you're done:

4.	 Now that we have all the costumes we want, let's write a script that cycles 
through them to create an animation. Click on the Scripts tab at the top of 
the script area and build the following script in it. You'll notice that your 
script for the first sprite isn't here. Each sprite has its own collection of scripts 
that decides how it should behave. You can always return to see a particular 
sprite's scripts by clicking on that sprite in the sprite list:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 29 ]

5.	 The next costume code block can be found in the Looks section of the blocks 
area. Click on the green flag to see what your animation looks like – you may 
want to adjust the time taken between switching costumes, so as to make 
your animation look better.

The background can also be animated using this technique—some 
of the backgrounds have multiple versions, and the stage can have 
its own collection of scripts to change the way it looks.

6.	 Finally, in the same way as we did for our first sprite, let's choose a sensible 
size and position for this second sprite. Drag it to a better position on the 
stage, and use the grow or shrink buttons to change its size.

Both of the animation methods we have met so far can be combined. It is possible to 
change a sprite's costume, and move it around the screen. This is as easy as adding 
a second script to a sprite. If we give both the scripts we have written so far to the 
same sprite, it will cycle through its costumes while it moves in a circle. Try it out if 
you like!

Interactive animation
We now have two different animated sprites, each doing their own thing. One of 
the special features of Scratch is that it makes interactive animation simple—we can 
program a sprite to react to you!

Create a new sprite in the same way as you did before using the Choose new sprite 
from file button. For this animation, we're going to have a simple conversation with 
the user, so choose an image of something that can talk. Find a good position and 
size for the new sprite, then build the following script in its script area:

www.it-ebooks.info

http://www.it-ebooks.info/


Animating with Scratch

[ 30 ]

There are a few new code blocks here. Let's go through them one by one:

•	 ask and wait: This gives the sprite a speech bubble, asking a question in a 
box. This block can be found in the Sensing section. The script will stop until 
the user has typed an answer into a text box on screen.

•	 answer: The answer to the question is stored in this block, and is also in the 
Sensing section.

•	 join: This takes two pieces of text and merges them into a longer sentence.
•	 say: This behaves a bit like ask did—the sprite uses a speech bubble to 

convey the text that is within its box. The say option can be found in the 
Looks section; there is also think which behaves similarly, but it has a 
thought bubble instead of a speech bubble. The number shown at the end of 
the say block determines how many seconds the speech bubble should be 
shown for.

•	 stop all: This ends all the scripts of all the sprites. This is not a necessary 
step, but is useful to end the scripts which run forever, and show that the 
animation has finished. This block can be found in the Control section.

Now let's continue the conversation. Add the following blocks between say and stop 
all, which you already have:

This is fairly similar to the previous section of code. The only clever part is that 
we want to join three pieces of text, but a single join block only allows two. To get 
around this, we join the first two pieces of text, I like the number and answer, in one 
block, and then join the whole first join block with too!.

Variables
Now, what if we want to use the player's name again to say goodbye at the end? We 
previously accessed the name using the answer block after we asked for the player's 
name. However, we have since asked another question, so answer now holds the 
player's favorite number.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 31 ]

The solution to this is to use variables. A variable is used to store a piece of 
information, and this information can be changed at any time. The answer variable  
is a special variable which is automatically set whenever a question is asked.

1.	 Click on Variables and then on Make a variable. The following window  
will pop-up:

2.	 Call your variable name and click on OK. You will see that a few new block 
options have appeared at the left-hand side of the screen. You will also see 
that name appears with a tick next to it—this means that the current value of 
the name is being displayed on the stage. We don't need this to be done, so 
click on the tick to remove it.

We can now complete our short conversation by storing the player's name in the 
name variable, so that we can access it again when it's time to say goodbye. Here is 
the script used for the whole conversation:

As you can see, instead of using the answer block directly, we store its value in the 
name variable, and then use name throughout the script.

www.it-ebooks.info

http://www.it-ebooks.info/


Animating with Scratch

[ 32 ]

Movement
Now let's add a bit of movement to this animation. We're going to make the sprite 
do backflips, and the number of backflips will be decided by the player's favorite 
number. Here's the code needed to perform a single backflip:

You may find it useful to build this script, and then click on it to run it once, before 
adding it to the existing script. This is a good way to test that it works properly. 
Here's a quick explanation of what's happening in this code:

•	 glide: This is a smooth form of motion. We give it a duration and a position 
to move to. A shorter duration means quicker movement. The position is 
described using x and y coordinates. The value of x axis increases as you 
move to the right on the stage, and y increases as you move up the stage. You 
can see the current coordinates of the mouse cursor at the bottom-right of 
the stage. In this case, we want to move upwards at the start of the flip and 
downwards at the end, so we add 50 to the sprite's current y position at the 
start, and subtract the same 50 when we're finished.

•	 repeat: This makes all of the code blocks inside it run a certain number 
of times. It is a lot like forever, which we have already seen, but it will 
eventually stop. In this case, we make 24 small rotations to make the flip 
appear smooth. You might have noticed that 24 rotations of 15 degrees  
makes up the full 360 degrees of a circle, so the sprite will finish the right 
way up at the end.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 33 ]

Now, that was one flip. We want to do a certain number of flips, so we will want to 
put the whole script, shown in the preceding image, inside another repeat block, and 
repeat it as many times as the player tells it to. In order to have access to the player's 
favorite number, we'll need to insert our new code into our previous script at the 
right point: after the question has been asked, but before saying goodbye. Here's 
what the code should look like now:

Keeping count
Now, let's have the sprite count the flips as it's moving so we know it does the right 
amount. For this, we're going to need a new variable to keep track of how many flips 
have taken place so far. Create a new variable called flips in the same way as you 
created name earlier. We will want to set the number of flips to zero before the sprite 
starts flipping; we will want to increase the number of flips by one after each flip, 
and also we'll also want the sprite to tell us how many flips it has done so far.

www.it-ebooks.info

http://www.it-ebooks.info/


Animating with Scratch

[ 34 ]

The following image shows you what the code for flipping should look like. All the 
other code should still be present in your script, but I'm not showing it in this image, 
so as to help you focus on the section that has changed:

As you can see, there are three new code blocks, which match up to the following 
three things we wanted to do:

•	 We set flips to 0 at the start
•	 We change flips by 1 after each flip (this adds 1 to the current value of flips)
•	 The sprite displays how many flips it has done so far in one second

If-then-else
Repetition is one way to control which code blocks run; the If-then-else method 
is another. In the Control section, you will see a few different types of repeat and 
forever blocks, and also a couple of blocks that say if. These blocks allow us to 
optionally run any code blocks inside them, depending on the result of a test. The else 
version of the block gives us options: if the test passes, only the blocks in the first gap 
run, and if the test fails, only the blocks in the second gap run. We're going to use 
this block in our script.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 35 ]

Here, you are shown some code, which makes use of the if-then-else code block. Our 
test is performed to figure out whether the number of flips is more than five. If it is, 
the sprite tells us how dizzy it is. If it isn't, then the sprite says that it was easy to do 
all the flips. We can put as many code blocks as we like within each of the gaps in the 
if-then-else block but, for this example, we only have one block in each.

This code needs to go in after all the flips have finished, but before saying goodbye. 
Here's an illustration of the final, completed script:

www.it-ebooks.info

http://www.it-ebooks.info/


Animating with Scratch

[ 36 ]

Summary
In this chapter, we explored a few different ways of creating animations in Scratch. 
Along the way, we used a wide selection of the available code blocks. Many of these 
blocks are very similar to those used in other programming languages—you will 
recognize them in later chapters.

Importantly, you should recognize that this is your program, and you are free to 
change it as you like. You can change the way any of the sprites look, you can change 
any of the text or numbers, and you can even change which blocks are used to 
change the behavior of the program.

In the next chapter, we will continue the theme of making things interactive by 
building an entire game in Scratch – a version of Angry Birds which you will be  
able to modify to suit you.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 37 ]

Making Your Own Angry 
Birds Game

In this chapter, we are going to make our own version of the popular Angry Birds™ 
game. What's more, when we're finished, we will be able to add all sorts of new rules 
and enemies to keep the game fresh. The following screenshot shows a completed 
version of our game:

If you haven't played Angry Birds before, here's a quick description of how the game 
works. The player launches a bird through the air using a slingshot and attempts to 
hit all the pigs at the other end of the level. In order to make things more challenging, 
the pigs are often hidden behind hills or inside flimsy buildings that the player must 
knock down.

www.it-ebooks.info

http://www.it-ebooks.info/


Making Your Own Angry Birds Game

[ 38 ]

By creating our own version of the game, we have the freedom to change whatever 
we like. We can change the level design, decrease gravity, fire the bird faster (or bee, 
in our case), replace all the characters, and add new power-ups and prizes. The sky is 
the limit!

Creating a character
We're going to use the Scratch programming language to create this game. To start 
our game, we will need a character to fling through the air. Angry Birds, of course, 
uses birds as its main characters, but we can use whatever we like.

At the top of the sprite list you should see the three buttons, as shown in the following 
screenshot. The first lets you draw your own character, the second lets you use an 
existing image (including a wide range of images included in Scratch), and the third 
gives you a random image from Scratch's selection. We've only used the second button 
in the previous chapter, but now is a good chance to explore the others:

If you click on the first button, you will be shown the following window; it has 
plenty of easy-to-use options that can help you create your own drawings. Hover 
your mouse cursor over any of the buttons to see what they do:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 39 ]

The second button brings up a fairly standard file explorer, which contains  
lots of neatly categorized images. This is the option I will use, but feel free  
to use something different.

Once you have drawn or selected a sprite, click on OK to add it to the game.  
If you choose not to use the default cat character, right-click on it in the sprite  
list and click on Delete (this will also delete any code you have created for the cat). 
You can navigate to Edit | Undelete to bring the cat and its code back.

The third button selects a random sprite and places it at a random position on  
the Stage.

Now that you have a main character, drag it within the Stage to roughly where you 
think will be a good starting position for it, and resize it by clicking on the shrink 
button in the sprite controls, and then repeatedly clicking on the sprite. I suggest 
making the sprite quite small so that there is plenty of room around it to fly. Now 
would also be a good time to give your character a name—there is a textbox at the 
top of the script area that should be named something similar to Sprite 2, which 
you can change to whatever you like.

Your screen should now look similar to this but with your own character instead of 
the bee that I have used:

www.it-ebooks.info

http://www.it-ebooks.info/


Making Your Own Angry Birds Game

[ 40 ]

Creating a level
Now, let's make the game look a little more interesting by adding some scenery 
through following these steps:

1.	 To the left of the sprite list, you'll see a white rectangle called Stage. Click on 
it and then select the Backgrounds tab in the script area. Again, you have the 
option of drawing your own background or using a preexisting image, but 
this time, I recommend creating your own so that you can make the level fun 
to play.

2.	 Click on the Edit button. Try to keep your background as simple as possible; 
it will be easier to add extra objects (for example, the ground, trees, and 
clouds) as additional sprites later, because then you will be able to move 
them around more easily. It is perhaps easiest to simply fill the background 
with a solid sky blue color (and maybe some distant mountains).

3.	 Now back in the Sprite list, create sprites for all the scenery you want in your 
game. At the minimum, you will need to create a sprite for the ground, but 
you can add all sorts of little details. With each sprite you create, remember 
to position it on the Stage, make sure it is the size you want, and give it a 
descriptive name. Remember that you can duplicate sprites using the left 
button in the Sprite Control area. When you have finished, you might be left 
with something similar to the this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 41 ]

I have put a hill in the middle of the level so as to make it more challenging to hit 
enemies on the right-hand side of the screen, when we create them.

When you are happy with your level design, draw a picture of a slingshot and add it 
to the left-hand side of the Stage. Give it the name Slingshot so we are able to find it 
easily later on. Your Scratch window should now look similar to this:

Moving the character
Now, let's start adding some code and making the game interactive! In this section, 
we'll do everything necessary to launch our main character using the slingshot.

www.it-ebooks.info

http://www.it-ebooks.info/


Making Your Own Angry Birds Game

[ 42 ]

Initialization
The first thing we want to do is make sure that the position of our main character 
resets every time we start the game. Click on the main character and create the 
following script in the script area:

The code snippet states that when the green flag is clicked, the current sprite  
(the main character) will move to the same position as the slingshot.

Check whether your code works by clicking on the green flag. You should see  
your character jumping to the same position as the slingshot. You may find that the 
character is behind the slingshot; if you would prefer for it to be in front, simply click 
on it on the Stage and drag it a short distance. Interacting with any sprite in this way 
will put it on top of all the other sprites.

Moving the character with the keyboard
Now, let's allow the player to move the character around using the keyboard  
so that they can aim their shot. We are mostly going to be making use of the code 
block (from the Sensing section), as seen in the following screenshot, but with 
different keys:

Before you read any further in this book, take a minute to have a look around at the 
available code blocks. Can you find any useful blocks that we could combine with 
this block to move a sprite up, down, left, or right? This block is a strange shape;  
how can we connect it to the motion blocks?

There are actually a few different ways to do this, but in this book, we will use the 
following code block:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 43 ]

Hopefully, this looks fairly sensible to you. If the left arrow key is pressed, do something. 
This something may be a bit confusing, however, so here's a quick explanation.

As mentioned briefly in the previous chapter, the position of every sprite on the 
screen is given by two numbers (or coordinates). The x coordinate tells you how far 
left or right the sprite is, and the y coordinate tells you how far up or down the sprite 
is. The center of the Stage is at (0,0), that is, both the x and y coordinates are zero. 
The x coordinate increases from left to right and the y coordinate increases from 
bottom to top. You can see the current coordinates of any sprite underneath its name 
in the script area, and the coordinates of the mouse are shown just under the Stage.

Since we want to move left when the left arrow key is pressed, we have to change the 
x coordinate by a negative amount. In this case, it has the same effect as subtracting 5.

We will need one of these code blocks for each arrow key:

•	 The left arrow key should change the x coordinate by -5
•	 The right arrow key should change the x coordinate by 5
•	 The up arrow key should change the y coordinate by 5
•	 The down arrow key should change the y coordinate by -5

Finally, since we want the player to be able to press each button multiple times to 
continue adjusting their position, we need to put all these blocks inside one big 
forever block. The forever block should be connected to the bottom of the existing 
script so that the player can adjust the character's position after the position has been 
reset. This is how your code should now look:

www.it-ebooks.info

http://www.it-ebooks.info/


Making Your Own Angry Birds Game

[ 44 ]

Once again, test your code out by clicking on the green flag. You should be able to 
move your character around by pressing the various arrow keys.

Launching the character!
Now that we've got the character in the right position, let's launch it! First, let's think 
about what we want to happen when the launch takes place. We want to stop the 
player from moving the character (so that they can't cheat), and instead, we want to 
start moving it with a speed and direction, depending on how far from the slingshot 
the player is.

Since we are moving into a new phase of the game, it is a good idea to use a 
separate script when we launch. This will help keep each script relatively small and 
manageable. Add the following code to the forever block where all of your other 
keyboard-handling blocks are, as follows:

Here, launch is the name of a message. When the Space key is pressed, launch is sent 
to all the other scripts, and if any of them are waiting for this particular message, 
they will start to run. We also stop the current script so that we can stop repeatedly 
checking which keys are being pressed, and then the player can't continue to move 
the character around.

Before we create the second script, we want to be able to calculate how fast to fling 
the character. To do this, we are going to store the speed in a variable. Variables allow 
us to store one value each and can be shared between different scripts. In this case, 
we will store a number, but variables can also store text. We are actually going to use 
two variables to store the speed: one for up-down speed and the other for left-right 
speed. The reasons for this will become clear later. Create two new variables called x 
speed and y speed. Make sure they are both valid for this sprite only by choosing the 
appropriate option when creating the variables.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 45 ]

Flight
Now that we have these variables, we can create the second script, which will control 
our flight through the air. The code for this is shown in the following screenshot. It's 
a little complicated, but try to work out what it does as you build the script up in the 
script area. I'll explain how it works shortly (for the two long blocks that are almost 
identical, it is possible to create one, then right-click on it and duplicate it to save 
effort in creating the second one):

This script waits until it receives the launch message from the first script. Only then 
does it start. We set the x speed variable to a value that is relative to the distance 
between the character and the slingshot; this distance is calculated by subtracting the 
position of the bee from the position of the slingshot. I divide the value by 20 to make 
sure that the flight isn't too fast, but you may prefer a different value here. Here are 
step-by-step instructions to build the code block up:

•	 Start with a set x speed block
•	 Insert a division block and type 20 into the second space
•	 Insert a subtraction block into the first space of the division block
•	 Insert x position of Slingshot into the first space of the subtraction block
•	 Insert x position into the second space of the subtraction block

We then do exactly the same to compute the y speed value. Once the speed has been 
computed, we repeatedly move the object according to our speed.

We're now in a good place to test if everything is working. Click on the green flag, 
move around, and then launch using the Spacebar. You should be able to see your 
character fly in a straight line across the screen. You may want to try launching from 
different positions to see how this affects your speed and direction.

www.it-ebooks.info

http://www.it-ebooks.info/


Making Your Own Angry Birds Game

[ 46 ]

One thing that you may have noticed is that your character flies directly through 
the middle of the slingshot, not the part that it should actually be fired from. This is 
easy to fix. Click on Slingshot in the sprite list; choose the Costumes tab in the script 
area, click on Edit, and click on Set costume center. You can now drag the crosshairs 
around to choose a more sensible launch position. Once you have finished, click on 
OK. The slingshot will probably need repositioning on Stage, but your character's 
flight should now follow a better path.

Adding physics
The next thing for us to do is to give our character a more interesting flight path.  
The game would be too easy (and no fun) if we just flew in a straight line through  
all the obstacles.

Gravity
First, let's add some gravity. Gravity has the effect of pulling objects down toward 
the ground. How can we model gravity in our game? The answer lies in the way 
we split our speed into both x speed and y speed. Gravity will only affect y speed, 
our speed in the up-down direction, so we can leave x speed as it is. Since the y 
coordinate increases as we move up but gravity pulls us down, we want gravity to 
keep subtracting a small amount from y speed. Add the following code block inside 
the forever block of your second script:

Try out the game now. You should arc through the air until you hit one of the edges of 
the screen. You may tweak the number in this code block if you wish; a higher negative 
number will give you stronger gravity. What happens if the number is positive?

Bouncing
Next, we'll make something more interesting happen if we hit the edge of the screen. 
As always, there are several options available, but I am going to suggest bouncing 
off the edges. When we bounce, we want to have the same speed but travel in the 
opposite direction. When we hit either of the side edges, we want our left-right 
direction to change, and when we hit the top or bottom edges, we want our up-down 
direction to change. There is an if on edge, bounce block in the Motion section, but it 
can have some unexpected effects in the game. Add it inside the forever block to see 
the effects, if you like, but remember to remove it again before continuing.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 47 ]

Instead, we'll write our own code to handle bouncing. Add the following code inside 
the forever block:

All we're doing here is checking the current position to see if it is at an edge and then 
reversing the direction. The numbers 240 and 180 come from the width and height 
of the Stage, respectively, and multiplying by -1 is a good way to keep the speed the 
same but reverse the direction.

Test the game again. Your character should bounce around the screen in smooth, 
curved paths.

Ending the game
The problem now is that you bounce around forever. We want the bouncing to stop 
at some point, and a good time to do this is when the character hits the ground. This 
is easy to do in Scratch with the following code:

Add this inside the forever block, and the script will end when the character sprite 
hits the ground sprite (you will need to choose the name of the sprite that you used 
for the ground). Since this script is in control of the character's movement, ending the 
script ends the movement, which is what we wanted.

www.it-ebooks.info

http://www.it-ebooks.info/


Making Your Own Angry Birds Game

[ 48 ]

Give your physics of the game a final test by playing the game. Your character 
should fly through the air while being pulled downwards by gravity, bounce off the 
edges of the screen, and stop when it hits the ground. This is how your second script 
should now look:

Scoring
Now that our main character can be launched properly, it's time to give the player 
something to aim at. In Angry Birds, there are pigs, but we can have anything we 
like. Draw a new sprite or use an existing one in the same way we created the main 
character earlier. I am going to use a premade shark in this example. Resize the sprite 
and put it in a good position.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 49 ]

Do you remember how we checked to see when the main character hit the ground? 
We're going to need to do something very similar here to detect when an enemy is 
hit by the main character. The following is the main piece of code to detect collisions, 
and inside it, we're going to put all the effects we want to happen when the enemy 
is hit. Make sure the enemy sprite is selected when you create this script—it controls 
the enemy's behavior and not the main character's. Note that we're using forever if 
rather than just if as we want to keep checking for collisions. Buzzy is the name of 
the sprite for my main bee character:

If everything has been done correctly, when an enemy is hit, the following  
events occur:

•	 The enemy disappears
•	 The score is updated
•	 The script for this enemy stops—we don't care about any future collisions

We can make the enemy disappear using the hide code block, and we've already 
seen how the script can be ended using stop script. The only thing left, then, is  
the score.

Create a new variable called score, and this time make sure that For all sprites 
is selected. This ensures that all the sprites have access to the score, so if there are 
multiple enemies, they can all update the same variable. Once the variable has been 
created, make sure the box next to it is marked so that the score appears on the Stage.

Now, we need to add some code so that the score increases when the enemy is hit. 
Add change score by 10 inside the forever if block.

www.it-ebooks.info

http://www.it-ebooks.info/


Making Your Own Angry Birds Game

[ 50 ]

Your script should now look similar to this screenshot:

Test your game by playing it and try to hit this enemy. Remember, if the game is too 
hard or too easy, you can adjust the sizes of the sprites, their launch speed, and the 
gravity. You will notice that once you hit the enemy, it disappears and you get points, 
but the score and enemies don't reset when you play again. Let's fix this. Add the code 
shown in the following screenshot to the enemy sprite as a second script:

Now the enemy should come back, and the score should reset to 0 every time you 
click on the green flag.

Only when you've finished all the code should you create multiple enemies.  
Right-click on the enemy sprite in the sprite list and click on Duplicate to create 
a copy. This copy will have all the necessary code in it to update the score, and 
then disappear after it has been hit. Create as many copies as you like, place them 
wherever you like, and then sit back and enjoy your game! It should look similar  
to this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 51 ]

Extensions
So far, we have created the bare minimum required for a game. There are all sorts of 
extra features we could add, such as the following:

1.	 An end-game screen, which shows when all the enemies have been hit or 
when the main character touches the ground.

2.	 Animation when two sprites collide.
3.	 A special enemy that gives bonus points.
4.	 Barriers that slow the player down.
5.	 Power-ups that increase the player's speed or flip gravity, for example.
6.	 Extra controls so that the player can continue to affect the character after it 

has been launched.

www.it-ebooks.info

http://www.it-ebooks.info/


Making Your Own Angry Birds Game

[ 52 ]

I will leave the rest of your game up to you, but here are some example scripts to 
give you some ideas. Try to work out what they do and where they might go, or  
just try them out! Some scripts might require minor modifications elsewhere to  
fit in properly:

Summary
In this chapter, we continued to learn how to use the Scratch programming language, 
and we went as far as creating an entire game.

In the next chapter, we'll take our knowledge of Scratch and see how we can apply 
it to a different programming language called Python. There, we'll learn how to use 
randomness to create lighthearted insults.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 53 ]

Creating Random Insults
In this chapter, we're going to move on from Scratch and use the Python programming 
language to generate random funny phrases such as, Alice has a smelly foot!

Python
In this chapter, we are going to use the Python programming language. Almost all 
programming languages are capable of doing the same things, but they are usually 
designed with different specializations. Some languages are designed to perform one 
job particularly well, some are designed to run code as fast as possible, and some are 
designed to be easy to learn.

Scratch was designed to develop animations and games, and to be easy to read  
and learn, but it can be difficult to manage large programs. Python is designed to  
be a good general-purpose language. It is easy to read and can run code much faster 
than Scratch.

Python is a text-based language. Using it, we type the code rather than arrange 
building blocks. This makes it easier to go back and change the pieces of code that 
we have already written, and it allows us to write complex pieces of code more 
quickly. It does mean that we need to type our programs accurately, though—there 
are no limits to what we can type, but not all text will form a valid program. Even a 
simple spelling mistake can result in errors. Lots of tutorials and information about 
the available features are provided online at http://docs.python.org/2/. Learn 
Python the Hard Way, by Shaw Zed A., is another good learning resource, which is 
available at http://learnpythonthehardway.org.

www.it-ebooks.info

http://docs.python.org/2/
http://learnpythonthehardway.org
http://www.it-ebooks.info/


Creating Random Insults

[ 54 ]

As an example, let's take a look at some Scratch and Python code, respectively, both 
of which do the same thing. Here's the Scratch code:

The Python code that does the same job looks like:

def count(maximum):
    value = 0
    while value < maximum:
        value = value + 1
        print "value =", value

count(5)

Even if you've never seen any Python code before, you might be able to read it and 
tell what it does. Both the Scratch and Python code count from 0 to a maximum 
value, and display the value each time.

The biggest difference is in the first line. Instead of waiting for a message, we define 
(or create) a function, and instead of sending a message, we call the function (more 
on how to run Python code, shortly). Notice that we include maximum as an argument 
to the count function. This tells Python the particular value we would like to keep 
as the maximum, so we can use the same code with different maximum values.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 55 ]

The other main differences are that we have while instead of forever if, and we 
have print instead of say. These are just different ways of writing the same thing. 
Also, instead of having a block of code wrap around other blocks, we simply put an 
extra four spaces at the beginning of a line to show which code is contained within a 
particular block.

Python programming
To run a piece of Python code, open Python 2 from the Programming menu on the 
Raspberry Pi desktop and perform the following steps:

1.	 Type the previous code into the window and you should notice that it can 
recognize how many spaces to start a line with.

2.	 When you have finished the function block, press Enter a couple of times, 
until you see >>>. This shows that Python recognizes that your block of  
code has been completed, and that it is ready to receive a new command.

3.	 Now, you can run your code by typing in count(5) and pressing Enter. You 
can change 5 to any number you like and press Enter again to count to a 
different number.

We're now ready to create our program!

The Raspberry Pi also supports Python 3, which is very similar 
but incompatible with Python 2. This book uses Python 2 as it is 
the default, but you may like to explore the differences online at 
http://python-future.org/compatible_idioms.html.

The program we're going to use to 
generate phrases
As mentioned earlier, our program is going to generate random, possibly funny, 
phrases for us. To do this, we're going to give each phrase a common structure,  
and randomize the word that appears in each position. Each phrase will look like:

<name> has a <adjective> <noun>

Where <name> is replaced by a person's name, <adjective> is replaced by a 
descriptive word, and <noun> is replaced by the name of an object.

www.it-ebooks.info

http://python-future.org/compatible_idioms.html
http://www.it-ebooks.info/


Creating Random Insults

[ 56 ]

This program is going to be a little larger than our previous code example, so we're 
going to want to save it and modify it easily. Navigate to File | New Window in 
Python 2. A second window will appear which starts off completely blank. We will 
write our code in this window, and when we run it, the results will appear in the first 
window. For the rest of the chapter, I will call the first window the Shell, and the 
new window the Code Editor. Remember to save your code regularly!

Lists
We're going to use a few different lists in our program. Lists are an important part of 
Python, and allow us to group together similar things. In our program, we want to 
have separate lists for all the possible names, adjectives, and nouns that can be used 
in our sentences. We can create a list in this manner:

names = ["Alice", "Bob", "Carol"]

Here, we have created a variable called names, which is a list. The list holds three 
items or elements: Alice, Bob, and Carol. We know that it is a list because the 
elements are surrounded by square brackets, and are separated by commas. The 
names need to be in quote marks to show that they are text, and not the names of 
variables elsewhere in the program.

To access the elements in a list, we use the number which matches its position, but 
curiously, we start counting from zero. This is because if we know where the start 
of the list is stored, we know that its first element is stored at position start + 0, the 
second element is at position start + 1, and so on. So, Alice is at position 0 in the list, 
Bob is at position 1, and Carol is at position 2. We use the following code to display 
the first element (Alice) on the screen:

print names[0]

We've seen print before: it displays text on the screen. The rest of the code is the 
name of our list (names), and the position of the element in the list that we want 
surrounded by square brackets.

Type these two lines of code into the Code Editor, and then navigate to Run | Run 
Module (or press F5). You should see Alice appear in the Shell. Feel free to play 
around with the names in the list or the position that is being accessed until you are 
comfortable with how lists work. You will need to rerun the code after each change. 
What happens if you choose a position that doesn't match any element in the list, 
such as 10?

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 57 ]

Adding randomness
So far, we have complete control over which name is displayed. Let's now work on 
displaying a random name each time we run the program. Update your code in the 
Code Editor so it looks like:

import random
names = ["Alice", "Bob", "Carol"]
position = random.randrange(3)
print names[position]

In the first line of the code, we import the random module. Python comes with a 
huge amount of code that other people have written for us, separated into different 
modules. Some of this code is simple, but makes life more convenient for us, and 
some of it is complex, allowing us to reuse other people's solutions for the challenges 
we face and concentrate on exactly what we want to do. In this case, we are making 
use of a collection of functions that deal with random behavior. We must import a 
module before we are able to access its contents.

Information on the available modules available can be 
found online at www.python.org/doc/.

After we've created the list of names, we then compute a random position in the list 
to access. The name random.randrange tells us that we are using a function called 
randrange, which can be found inside the random module that we imported earlier. 
The randrange function gives us a random whole number less than the number we 
provide. In this case, we provide 3 because the list has three elements and we store 
the random position in a new variable called position. Finally, instead of accessing 
a fixed element in the names list, we access the element that position refers to.

If you run this code a few times, you should notice that different names are  
chosen randomly.

Now, what happens if we want to add a fourth name, Dave, to our list? We need to 
update the list itself, but we also need to update the value we provide to randrange 
to let it know that it can give us larger numbers. Making multiple changes just to add 
one name can cause problems—if the program is much larger, we may forget which 
parts of the code need to be updated. Luckily, Python has a nice feature which allows 
us to make this simpler.

www.it-ebooks.info

www.python.org/doc/
http://www.it-ebooks.info/


Creating Random Insults

[ 58 ]

Instead of a fixed number (such as 3), we can ask Python for the length of a list, and 
provide that to the randrange function. Then, whenever we update the list, Python 
knows exactly how long it is, and can generate suitable random numbers. Here is the 
code, which is updated to make it easier to change the length of the list:

import random
names = ["Alice", "Bob", "Carol"]
length = len(names)
position = random.randrange(length)
print names[position]

Here, we've created a new variable called length to hold the length of the list. We 
then use the len function (which is short for length) to compute the length of our 
list, and we give length to the randrange function. If you run this code, you should 
see that it works exactly as it did before, and it easily copes if you add or remove 
elements from the list.

It turns out that this is such a common thing to do, that the writers of the random 
module have provided a function which does the same job. We can use this to 
simplify our code:

import random
names = ["Alice", "Bob", "Carol", "Dave"]
print random.choice(names)

As you can see, we no longer need to compute the length of the list or a random 
position in it: random.choice does all of this for us, and simply gives us a random 
element of any list we provide it with. As we will see in the next section, this is useful 
since we can reuse random.choice for all the different lists we want to include in  
our program.

If you run this program, you will see that it works the same as it did before, despite 
being much shorter.

Creating phrases
Now that we can get a random element from a list, we've crossed the halfway mark 
to generating random sentences!

Create two more lists in your program, one called adjectives, and the other called 
nouns. Put as many descriptive words as you like into the first one, and a selection  
of objects into the second. Here are the three lists I now have in my program:

names = ["Alice", "Bob", "Carol", "Dave"]
adjectives = ["fast", "slow", "pretty", "smelly"]
nouns = ["dog", "car", "face", "foot"]

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 59 ]

Also, instead of printing our random elements immediately, let's store them in 
variables so that we can put them all together at the end. Remove the existing  
line of code with print in it, and add the following three lines after the lists  
have been created:

name = random.choice(names)
adjective = random.choice(adjectives)
noun = random.choice(nouns)

Now, we just need to put everything together to create a sentence. Add this line of 
code right at the end of the program:

print name, "has a", adjective, noun

Here, we've used commas to separate all of the things we want to display. The 
name, adjective, and noun are our variables holding the random elements of each 
of the lists, and "has a" is some extra text that completes the sentence. print will 
automatically put a space between each thing it displays (and start a new line at the 
end). If you ever want to prevent Python from adding a space between two items, 
separate them with + rather than a comma.

That's it! If you run the program, you should see random phrases being displayed 
each time, such as Alice has a smelly foot or Carol has a fast car.

Making mischief
So, we have random phrases being displayed, but what if we now want to make 
them less random? What if you want to show your program to a friend, but make 
sure that it only ever says nice things about you, or bad things about them? In this 
section, we'll extend the program to do just that.

Dictionaries
The first thing we're going to do is replace one of our lists with a dictionary. A 
dictionary in Python uses one piece of information (a number, some text, or almost 
anything else) to search for another. This is a lot like the dictionaries you might be 
used to, where you use a word to search for its meaning. In Python, we say that we 
use a key to look for a value.

We're going to turn our adjectives list into a dictionary. The keys will be the 
existing descriptive words, and the values will be tags that tell us what sort of 
descriptive words they are. Each adjective will be "good" or "bad".

www.it-ebooks.info

http://www.it-ebooks.info/


Creating Random Insults

[ 60 ]

My adjectives list becomes the following dictionary. Make similar changes to yours.

adjectives = {"fast":"good", "slow":"bad", "pretty":"good",  
"smelly":"bad"}

As you can see, the square brackets from the list become curly braces when you 
create a dictionary. The elements are still separated by commas, but now each 
element is a key-value pair with the adjective first, then a colon, and then the  
type of adjective it is.

To access a value in a dictionary, we no longer use the number which matches its 
position. Instead, we use the key with which it is paired. So, as an example, the 
following code will display "good" because "pretty" is paired with "good" in the 
adjectives dictionary:

print adjectives["pretty"]

If you try to run your program now, you'll get an error which mentions random.
choice(adjectives). This is because random.choice expects to be given a list, but 
is now being given a dictionary. To get the code working as it was before, replace 
that line of code with this:

adjective = random.choice(adjectives.keys())

The addition of .keys() means that we only look at the keys in the dictionary—
these are the adjectives we were using before, so the code should work as it did 
previously. Test it out now to make sure.

Loops
You may remember the forever and repeat code blocks in Scratch. In this section, 
we're going to use Python's versions of these to repeatedly choose random items 
from our dictionary until we find one which is tagged as "good". A loop is the 
general programming term for this repetition—if you walk around a loop, you 
will repeat the same path over and over again, and it is the same with loops in 
programming languages.

Here is some code, which finds an adjective and is tagged as "good". Replace your 
existing adjective = line of code with these lines:

while True:
    adjective = random.choice(adjectives.keys())
    if adjectives[adjective] == "good":
        break

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 61 ]

The first line creates our loop. It contains the while key word, and a test to see 
whether the code should be executed inside the loop. In this case, we make the test 
True, so it always passes, and we always execute the code inside. We end the line 
with a colon to show that this is the beginning of a block of code. While in Scratch we 
could drag code blocks inside of the forever or repeat blocks, in Python we need to 
show which code is inside the block in a different way. First, we put a colon at the end 
of the line, and then we indent any code which we want to repeat by four spaces.

The second line is the code we had before: we choose a random adjective from  
our dictionary.

The third line uses adjectives[adjective] to look into the (adjectives) 
dictionary for the tag of our chosen adjective. We compare the tag with "good" 
using the double = sign (a double = is needed to make the comparison different from 
the single = case, which stores a value in a variable). Finally, if the tag matches 
"good", we enter another block of code: we put a colon at the end of the line, and 
the following code is indented by another four spaces. This behaves the same way as 
the Scratch if block.

The fourth line contains a single word: break. This is used to escape from loops, 
which is what we want to do now that we have found a "good" adjective.

If you run your code a few times now, you should see that none of the bad adjectives 
ever appear.

Conditionals
In the preceding section, we saw a simple use of the if statement to control when 
some code was executed. Now, we're going to do something a little more complex. 
Let's say we want to give Alice a good adjective, but give Bob a bad adjective. For 
everyone else, we don't mind if their adjective is good or bad.

The code we already have to choose an adjective is perfect for Alice: we always want 
a good adjective. We just need to make sure that it only runs if our random phrase 
generator has chosen Alice as its random person. To do this, we need to put all the 
code for choosing an adjective within another if statement, as shown here:

if name == "Alice":
    while True:
        adjective = random.choice(adjectives.keys())
        if adjectives[adjective] == "good":
            break

Remember to indent everything inside the if statement by an extra four spaces.

www.it-ebooks.info

http://www.it-ebooks.info/


Creating Random Insults

[ 62 ]

Next, we want a very similar piece of code for Bob, but also want to make sure that 
the adjective is bad:

elif name == "Bob":
    while True:
        adjective = random.choice(adjectives.keys())
        if adjectives[adjective] == "bad":
            break

The only differences between this and Alice's code is that the name has changed to 
"Bob", the target tag has changed to "bad", and if has changed to elif. The word 
elif in the code is short for else if. We use this version because we only want to do 
this test if the first test (with Alice) fails. This makes a lot of sense if we look at the 
code as a whole: if our random person is Alice, do something, else if our random 
person is Bob, do something else.

Finally, we want some code that can deal with everyone else. This time, we don't 
want to perform another test, so we don't need an if statement: we can just use else:

else:
    adjective = random.choice(adjectives.keys())

With this, our program does everything we wanted it to do. It generates random 
phrases, and we can even customize what sort of phrase each person gets. You can 
add as many extra elif blocks to your program as you like, so as to customize it for 
different people.

Functions
In this section, we're not going to change the behavior of our program at all; we're 
just going to tidy it up a bit.

You may have noticed that when customizing the types of adjectives for different 
people, you created multiple sections of code, which were almost identical. This isn't 
a very good way of programming because if we ever want to change the way we 
choose adjectives, we will have to do it multiple times, and this makes it much easier 
to make mistakes or forget to make a change somewhere.

What we want is a single piece of code, which does the job we want it to do, and 
then be able to use it multiple times. We call this piece of code a function. We saw an 
example of a function being created in the comparison with Scratch at the beginning 
of this chapter, and we've used a few functions from the random module already. A 
function can take some inputs (called arguments) and does some computation with 
them to produce a result, which it returns.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 63 ]

Here is a function which chooses an adjective for us with a given tag:

def chooseAdjective(tag):
    while True:
        item = random.choice(adjectives.keys())
        if adjectives[item] == tag:
            break
    return item

In the first line, we use def to say that we are defining a new function. We also give 
the function's name and the names of its arguments in brackets. We separate the 
arguments by commas if there is more than one of them. At the end of the line, we 
have a colon to show that we are entering a new code block, and the rest of the code 
in the function is indented by four spaces.

The next four lines should look very familiar to you—they are almost identical to the 
code we had before. The only difference is that instead of comparing with "good" or 
"bad", we compare with the tag argument. When we use this function, we will set 
tag to an appropriate value.

The final line returns the suitable adjective we've found. Pay attention to its 
indentation. The line of code is inside the function, but not inside the while loop (we 
don't want to return every item we check), so it is only indented by four spaces in total.

Type the code for this function anywhere above the existing code, which chooses the 
adjective; the function needs to exist in the code prior to the place where we use it. In 
particular, in Python, we tend to place our code in the following order:

1.	 Imports
2.	 Functions
3.	 Variables
4.	 Rest of the code

This allows us to use our functions when creating the variables. So, place your 
function just after the import statement, but before the lists. We can now use this 
function instead of the several lines of code that we were using before. The code I'm 
going to use to choose the adjective now becomes:

if name == "Alice":
    adjective = chooseAdjective("good")
elif name == "Bob":
    adjective = chooseAdjective("bad")
else:
    adjective = random.choice(adjectives.keys())

www.it-ebooks.info

http://www.it-ebooks.info/


Creating Random Insults

[ 64 ]

This looks much neater! Now, if we ever want to change how an adjective is chosen, 
we just need to change the chooseAdjective function, and the change will be seen 
in every part of the code where the function is used.

Complete code listing
Here is the final code you should have when you have completed this chapter. You 
can use this code listing to check that you have everything in the right order, or look 
for other problems in your code. Of course, you are free to change the contents of the 
lists and dictionaries to whatever you like; this is only an example:

import random

def chooseAdjective(tag):
    while True:
        item = random.choice(adjectives.keys())
        if adjectives[item] == tag:
            break
    return item

names = ["Alice", "Bob", "Carol", "Dave"]
adjectives = {"fast":"good", "slow":"bad", "pretty":"good",  
"smelly":"bad"}
nouns = ["dog", "car", "face", "foot"]

name = random.choice(names)
#adjective = random.choice(adjectives)
noun = random.choice(nouns)

if name == "Alice":
    adjective = chooseAdjective("good")
elif name == "Bob":
    adjective = chooseAdjective("bad")
else:
    adjective = random.choice(adjectives.keys())

print name, "has a", adjective, noun

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 65 ]

Summary
In this chapter, we learned about the Python programming language and how it can 
be used to create random phrases. We saw that it shared lots of features with Scratch, 
but is simply presented differently.

In the next chapter, we'll continue learning about Python, and will discover how to 
allow computer code to interact with the physical world.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


[ 67 ]

Testing Your Speed
In this chapter, we're going to create a new game that will test how quickly the 
player can react. To do this, we will create our own game controller—something you 
can't easily do on a normal computer—and write a program that tells the Pi what to 
do when the controller's buttons are pressed.

If you do not have the components required to create the controller, an alternative 
program that uses the keyboard instead is provided at the end of the chapter. It is 
very similar to the default program, so it is still worth reading through this chapter 
to learn how everything works.

Materials needed to make your own 
controller
The materials that are required to make your own controller are shown in the 
following figure. Think about what you would like your controller to look like and 
how many buttons it should have, as this will determine how many of each item you 
will need:

www.it-ebooks.info

http://www.it-ebooks.info/


Testing Your Speed

[ 68 ]

The preceding figure shows the items we need to create a controller and the details 
are as follows:

•	 Card (1) (as large as you want the controller to be)
•	 Wires (2)
•	 Paper fasteners (3) (2 x number of buttons)
•	 Paper clips (4) (1 x number of buttons; each clip should be in plain metal with 

no coating around it)
•	 Sticky tape (5)
•	 Pens/pencils for decoration (6)

If you already have some electric switches you'd like to use, you will not need 
the paper fasteners, paper clips, or sticky tape, but I think it's more fun to make 
everything from scratch!

We also need a safe way to connect the wires to the Raspberry Pi. One approach  
is to use special male to female wires, which behave like normal wires at one end,  
but can be connected to a pin or another wire at the other end. The other way 
is to use a Raspberry Pi breakout board, ribbon cable, and a breadboard. These 
three work together to give a larger area to plug in electronic components. The 
website http://www.adafruit.com is a great online shop that sells these sorts of 
components for the Raspberry Pi; you even get explanations on how to use them  
(refer to http://www.adafruit.com/category/105).

Creating the game controller
In order to design a controller, we first need to know what sort of game is going to be 
played. I am going to explain how to make a game where the player is given a letter 
and they have to press the button of that letter as quickly as possible. They are then 
told another letter. The player has to hit as many buttons correctly as they can in a 
30-second time limit.

There are many ways in which this game can be varied; instead of ordering the player 
to press a particular button, the game could ask the player a multiple-choice question, 
and instead of letters, the buttons could be labeled with Yes, No, Maybe, or different 
colors. You could give the player multiple commands in a sequence and make sure 
that they press all the buttons in the right order. It would even be possible to make a 
huge controller and treat it as more of a board game. I will leave the game design up 
to you, but I recommend that you follow the instructions in this chapter until the end 
and then change things to your liking once you know how everything works.

www.it-ebooks.info

http://www.adafruit.com
http://www.adafruit.com/category/105
http://www.it-ebooks.info/


Chapter 5

[ 69 ]

The controller base
So, now that we know how the game is going to be played, it's time to design the 
controller. This is what my finished controller design looks like, with four different 
letters and its paper clip buttons in place:

Make sure each button area is at least a little bigger than a paper clip, as these are 
what the buttons will be made of. I recommend a maximum of eight buttons.

Draw your design on to the card, decorate it however you like, and then cut it out.

Adding buttons
Now for each button, we need to perform the following steps:

1.	 Poke two small holes in the card, roughly 3 cm apart (or however long your 
paper clips are), as shown in the following figure. Use a sharp pencil or a pair 
of scissors to do this:

www.it-ebooks.info

http://www.it-ebooks.info/


Testing Your Speed

[ 70 ]

2.	 Push a paper fastener through each hole and open them out:

3.	 Wrap a paper clip around the head of one of the fasteners, and (if necessary) 
bend it so that it grips the fastener tightly:

4.	 Bend the other end of the paper clip up very slightly, so that it doesn't touch 
the second fastener unless you press down on it:

5.	 Turn the card over and tape one leg of each fastener in place, making sure 
that they don't touch each other:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 71 ]

6.	 Tape a length of wire to each of the two remaining legs of the fasteners. 
The ends of the wires should be exposed metal so that electricity can flow 
through the wire, paper fastener, and paper clip (as shown in the following 
figure). You might want to delay this step until later, when you have a better 
idea of how long the wire should be:

Connecting to the Raspberry Pi
Now that the controller is ready, it's time to connect it to the Raspberry Pi. One of 
the things that makes the Raspberry Pi different from a normal computer is its set of 
General-Purpose Input/Output (GPIO) pins. These are the 40 pins (or 26 for older 
Raspberry Pi models) in the top-left corner of the Raspberry Pi, just above the logo. 
As the name suggests, they can be used for any purpose and are capable of both 
sending and receiving signals:

The preceding figure shows what each of the pins does (if you have 26 pins, these 
are the ones present on the left-hand side of the preceding image). In order to create 
a useful circuit, we need to connect one of the power pins to one of the ground pins 
with some sort of electrical component in between. The GPIO pins are particularly 
useful because we can make them behave like either power or ground pins and they 
can also detect what they're connected to.

www.it-ebooks.info

http://www.it-ebooks.info/


Testing Your Speed

[ 72 ]

Note that there are two versions of the pin numbering system. You will almost 
certainly have a revision 2 Raspberry Pi. The revision 2 boards have mounting holes, 
while the revision 1 board has none (these holes are surrounded by metal and are large 
enough to put a screw through them. It's easy to spot them if they're there). It is safest 
to simply not use any of the pins that have different numbers in different revisions.

To connect your controller to the Raspberry Pi, connect one wire from each button to 
a 3.3V (3V3) power pin, and each of the remaining wires to a different GPIO pin (one 
with GPIO in its name, as shown in the previous figure). In my example, I will use 
pins 22, 23, 24, and 25. Everything is now connected, as shown here:

We're now ready to create our game!

Coding the game
Here's a quick recap of how this example game is going to work. The Raspberry Pi will 
choose a random button and ask the player to press it. Every time the player presses 
the correct button, they get a point, and every time they press a wrong button, they 
lose a point. Once the correct button has been pressed, the Raspberry Pi selects a new 
button as the target. The aim is to score as many points as possible in 30 seconds.

In Python 2, navigate to File | New Window. This will bring up a new empty Code 
Editor window, which is where all our code will go.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 73 ]

Random behavior
The first job, then, is to write some code that will choose a random button for the 
player to press. Take a look at the following code snippet:

import random
options = [22, 23, 24, 25]

def nexttarget():
    target = random.choice(options)
    print target
    return target

In the first line of the code, we import the random module, which we saw in the 
previous chapter, Chapter 4, Creating Random Insults.

In the second line of the code, we create a list of options. These are the GPIO pins 
that the buttons are connected to.

Next, we create a function called nexttarget. The empty brackets afterwards 
show that we do not need to pass any arguments to this function for it to work. 
The function chooses one of the options at random and stores it in a variable called 
target. We do this using the random.choice function, which we've seen before.  
We then print the target to display it to the player and return the target to whichever 
piece of code asked for it.

Type it all into the Code Editor and run it. Type nexttarget() next to the >>> 
marker in the Shell and press Enter, and you should see numbers being displayed. 
You can do this as many times as you like to make sure random pins are being 
displayed. The problem is that if the player is told to press pin 22, he/she might not 
know which button is being referred to. Let's change our code to improve that. Go 
back to the Code Editor and update your code, as follows:

import random
options = {22:"A", 23:"B", 24:"C", 25:"D"}

def nexttarget():
    target = random.choice(options.keys())
    print options[target]
    return target

www.it-ebooks.info

http://www.it-ebooks.info/


Testing Your Speed

[ 74 ]

The main difference is that we've changed options from a list to a dictionary (note 
the curly brackets being used instead of square ones). Using a dictionary allows us 
to give each pin a name, which will be more useful to the player. In this case, I have 
connected pin 22 to the A button and so on. Remember that in proper coding terms, 
the dictionary links each key (pin number) with a value (name). Our target pin must 
therefore be chosen from the dictionary's keys, so we add .keys() in the line where 
we choose a pin. Finally, when we display the target to the player, we get its name 
from the dictionary using the square brackets.

Using the controller
Next, we need to detect which button is currently being pressed. Look at the 
following code snippet (pay careful attention to the indentation):

import RPi.GPIO as GPIO

def buttonpressed():
    for pin in options.keys():
        if GPIO.input(pin) == GPIO.HIGH:
            return pin
    else:
        return None

Once again, we're importing a module that does some of the 
behind-the-scenes work for us. This time, we've used as to give it 
a slightly shorter name, which will hopefully make the rest of the 
code easier to read. We usually put all imports together at the very 
top of the code, as this makes it easier to see them all at once and 
makes them accessible for as much of the program as possible. All 
the code for this chapter is shown together toward the end, in case 
you are unsure where to put a particular piece of code.

Inside the buttonpressed function, we have a for loop. This is a lot like the  
while loop we've used before, except we tell it to stop after it has run a certain 
number of times. In this case, we tell it to run once for each of the pins in our 
dictionary of options.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 75 ]

We then check to see what signal that pin is receiving. If it is receiving GPIO.LOW, we 
know that the button is not being pressed, but if it is receiving GPIO.HIGH, we know 
that the button is being pressed and that there is a connection from this pin, through 
the button, to the power pin (in electronics, we say a signal is low if it is connected 
to the ground and high if it is connected to the voltage supply). If the button is being 
pressed, we return the pin number. Remember that a single equals sign is used to 
give a variable a new value, but a double equals sign checks to see if two values are 
the same. If none of the pins are being pressed, we return the special None value.

Before we can access the pins, we need to prepare them. Since they can be used for 
any purpose, we need to tell them what their job is for this particular piece of code. 
Add the following function to your code in the Code Editor:

def preparepins():
    GPIO.setmode(GPIO.BCM)
    for pin in options.keys():
        GPIO.setup(pin, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

The GPIO.setmode line selects a particular numbering scheme for the Raspberry Pi's 
pins. Then, we have another for loop that looks at each of the pins in turn. For each 
pin, we choose GPIO.IN to say that it should be an input and receive signals and we 
use GPIO.PUD_DOWN to say that if nothing is connected to the pin, its signal should be 
pulled down to behave like GPIO.LOW (no button press).

Pulling a pin in a particular direction prevents its value from 
floating and sometimes looking like GPIO.HIGH and at other 
times looking like GPIO.LOW.

This function will need to be run before we receive any signals from the pins in the 
buttonpressed function (if you do try to run this code now, you may get some 
strange error messages; we'll address these soon).

Adding a time limit
We can make sure that the preparepins function is always run before the 
buttonpressed function by writing it into our program. Let's now start building the 
function that brings everything together to create a game. For now, we want to set up 
the GPIO pins and make sure the game lasts the correct length of time, in this way:

import time

def play(duration):

www.it-ebooks.info

http://www.it-ebooks.info/


Testing Your Speed

[ 76 ]

    preparepins()

    start = time.time()
    end = start + duration

    while time.time() < end:
        # Do stuff
        time.sleep(0.1)

Once again, we are importing a module of existing code to do some of the hard  
work for us. This time, it's a module full of functions that deal with time and  
we are particularly interested in the one that tells us what the current time is.

Notice that we give duration as an argument to the play function. This lets us easily 
change the length of the game later, if we like. We then make absolutely sure that the 
preparepins function happens first by executing it straight away.

Next, we make a note of the current time using the time.time() function and store 
it in a variable called start. We calculate the time at which the game should end by 
adding the length of the game to the current time.

We then enter a while block (or forever if, if you prefer), which continues until the 
current time passes the time when the game should end. Inside the while block, we 
have a comment beginning with #. Comments are ignored by Python, but are useful 
for the programmer. You can leave notes for yourself to explain what a piece of code 
does. In this case, we've left a comment to say that there is more code to go inside, 
but we'll come back to it later. Finally, we put our program to sleep for 0.1 seconds. 
This has the following two purposes:

•	 It ensures that we don't waste time checking whether the buttons are pressed 
immediately after a previous check.

•	 It makes reading from the pins more reliable. In the instant after pressing a 
button, the paper clip may actually bounce up and down a tiny bit, making 
it seem like the button is being pressed multiple times. If this is the way this 
game works, the player could end up losing points, as the game may think 
the wrong button is being pressed.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 77 ]

Bringing it all together
Now, let's fill in the gaps and turn our program into a game. We want to use 
nexttarget and buttonpressed together to tell us whether the right or wrong 
button is being pressed and we want to keep track of the score. Update the play 
function so it looks like the following code snippet:

def play(duration):
    preparepins()

    start = time.time()
    end = start + duration
    score = 0

    target = nexttarget()
    while time.time() < end:
        button = buttonpressed()
        if button == target:
            score = score + 1
            print "Correct!"
            target = nexttarget()
        elif button != None:
            score = score - 1
            print "Wrong!"
        time.sleep(0.1)

    print "Your final score is", score

Here's a summary of what's changed:

•	 We've created a new variable called score, which starts at 0. Whenever  
the player presses the right button, the score goes up, and whenever they 
press the wrong button, it goes down. At the end of the game, we display  
the final score.

•	 We added another new variable called target. This is the pin connected 
to the button that we want the player to press. We set a target using 
nexttarget when the game first starts, and we update the target whenever 
the player presses the correct button.

www.it-ebooks.info

http://www.it-ebooks.info/


Testing Your Speed

[ 78 ]

•	 Inside the while block, we check which button is being pressed (if any). If the 
pressed button is the same as the target button, we give the player a point. 
Otherwise, if a different button is being pressed, we take a point away. elif 
is short for else if, and is used when we have multiple if blocks, but only 
want one of them to be executed. There's also a third possibility, that no 
button is pressed at all. In this case we want to do nothing at all, so we can 
leave the else block out entirely.

That's it! The game is ready to play. There's just one final small piece of code to add 
to the very end of the program, which could make things easier for us later:

if __name__ == "__main__":
    play(30)

This is a special small trick that allows us to reuse our code later as its own module, 
or just play the game without having to load and run all of the code in Python 2 first.

Now, if you try to play the game, you will probably get an error message. This is 
because the Raspberry Pi's operating system wants to protect all of its hardware. You 
could end up doing dangerous things if you were allowed to change whatever you 
like! In this case, though, our actions are limited to the GPIO pins, so we can be fairly 
sure that we won't break anything as long as you have followed the instructions 
in this chapter carefully. Save your code and close down the Python Shell and 
Code Editor windows. Open LXTerminal and type in sudo idle <name of your 
program>. You might be asked to enter your password (the default is raspberry). 
You should see the windows open up again, and it should look exactly the same as 
before. This time, however, you should be able to navigate to Run | Run Module to 
play the game. The difference is the sudo command. This tells the Raspberry Pi that 
we know what we're doing and that we're sure we're not going to damage anything.

Be very careful when using the sudo command because the 
computer will always do exactly what you tell it to, even if 
this means causing permanent damage.

Our little extra piece of code at the end of the program gives us a different way of 
starting the game. Close down the Python Shell and Code Editor windows and type 
sudo python <name of program> into the terminal. The game should start much 
more quickly this time.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 79 ]

Complete code listing
The complete code listing section shows the complete program. This may be useful if 
you're not sure where the different code snippets should go, or if your program isn't 
working and you want to compare it to something that works:

import RPi.GPIO as GPIO
import random
import time

def preparepins():
    GPIO.setmode(GPIO.BCM)
    for pin in options.keys():
        GPIO.setup(pin, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

def nexttarget():
    target = random.choice(options.keys())
    print options[target]
    return target

def buttonpressed():
    for pin in options.keys():
        if GPIO.input(pin) == GPIO.HIGH:
            return pin
    else:
        return None

def play(duration):
    preparepins()

    start = time.time()
    end = start + duration
    score = 0

    target = nexttarget()
    while time.time() < end:
        button = buttonpressed()
        if button == target:
            score = score + 1
            print "Correct!"
            target = nexttarget()
        elif button != None:
            score = score - 1
            print "Wrong!"

www.it-ebooks.info

http://www.it-ebooks.info/


Testing Your Speed

[ 80 ]

        time.sleep(0.1)

    print "Your final score is", score

options = {22:"A", 23:"B", 24:"C", 25:"D"}

if __name__ == "__main__":
    play(30)

The keyboard version
If you do not have access to the components necessary to create your own controller, 
here is a slightly modified program that uses the keyboard instead. You might notice 
that its structure is exactly the same as the previous program. Separating tasks into 
different functions allows us to make changes like these quickly and easily:

import pygame, pygame.event, pygame.key
from pygame.locals import *
import random
import time

def prepare():
    pygame.init()
    screen = pygame.display.set_mode((250, 1))
    pygame.display.set_caption("Test your speed!")

def nexttarget():
    target = random.choice(options.keys())
    print options[target]
    return target

def keypressed():
    pygame.event.pump()
    keyspressed = pygame.key.get_pressed()
    for key in options.keys():
        if keyspressed[key]:
            return key
    else:
        return None

def play(duration):
    prepare()

    start = time.time()

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 81 ]

    end = start + duration
    score = 0

    target = nexttarget()
    while time.time() < end:
        key = keypressed()
        if key == target:
            score = score + 1
            print "Correct!"
            target = nexttarget()
        elif key != None:
            score = score - 1
            print "Wrong!"
        time.sleep(0.1)

    print "Your final score is", score

    pygame.quit()

options = {K_w:"w", K_a:"a", K_s:"s", K_d:"d"}

if __name__ == "__main__":
    play(30)

What's next?
Now that your game is working, you might like to try using most of the same code 
to create different games (I suggest that if you make changes, save it to a different 
file, so that you don't lose your current game). In particular, you could change 
nexttarget() so that it asks a question and gives some possible answers, and the 
player has to choose an answer as quickly as possible. Alternatively, you could create 
a Simon Says style game, where the game gives a sequence of buttons that must be 
pressed and the player tries to repeat it.

If you have an Internet connection and are feeling adventurous, you could try  
using your controller to play your Angry Birds game, as shown in Chapter 3,  
Making Your Own Angry Birds Game. Search the Internet for ScratchGPIO to  
download an enhanced version of Scratch, and try to explore how it can  
interact with the Raspberry Pi's GPIO pins.

If you're interested in learning more about electronics and what you can do with 
GPIO, take a look at Adafruit's online tutorials at http://learn.adafruit.com/
category/learn-raspberry-pi.

www.it-ebooks.info

http://learn.adafruit.com/category/learn-raspberry-pi
http://learn.adafruit.com/category/learn-raspberry-pi
http://www.it-ebooks.info/


Testing Your Speed

[ 82 ]

Summary
In this chapter, we used the Python programming language to create a game. 
We created an electronic circuit to act as the game controller, and used code to 
detect when the buttons were being pressed. We revisited the basics of the Python 
language, and saw how separating the code into multiple functions makes it more 
flexible and easier to manage.

In the next chapter, we will build on this Python knowledge to create an  
interactive map.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 83 ]

Making an Interactive  
Map of your City

In this chapter, we're going to learn more about Python and its available modules by 
creating a program that will allow us to create notes on a map of our local area.

A program such as this needs a proper Graphical User Interface (GUI), which is 
just a complicated way of saying that it is a visual program with things to see and 
buttons to click. Here's what the program looks like when it's finished:

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 84 ]

As you can see, the program looks quite professional with its title bar and buttons. 
You will be able to click on locations on the map and give helpful labels. By the end 
of this chapter, you will know enough about building GUIs to be able to add all sorts 
of additional features.

Hello world!
As is traditional when we learn about a new technology, we're going to start with the 
simplest program possible, just to make sure that we understand the basics. In this 
case, we're going to create a basic window with a title and some text inside.

Tkinter
There are many different Python modules available that let us create graphical 
programs, but we're going to use one called Tkinter. This module is included with 
Python by default and works on almost all computers and operating systems. It 
allows Python to communicate with the Tk toolkit, and it is Tk which will generate 
our displays.

Tkinter has easy-to-use functions to create textboxes, buttons, scroll bars, menus, 
and more. Collectively, these components are called widgets. To create a graphical 
user interface, we combine a number of widgets with a layout, which tells Tkinter 
how the widgets should be arranged. For example, we could say that all the buttons 
should be placed in a row or that they should be arranged vertically.

A summary of how to use the available widgets in the Extensions section is provided 
at the end of this chapter.

Writing the program
Before we start, open a fresh Python 2 window and make sure you are in the Code 
Editor window (navigate to File | New Window).

1.	 The first thing we want to do is to import the Tkinter module so we can 
make use of all the functions it contains; therefore, add the following line  
of code at the top of the file:
import Tkinter

2.	 Now would also be a good time to save the program and give it a useful 
name. Navigate to File | Save and save the program as hellogui.py.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 85 ]

3.	 Creating a window is very simple. All we need is the following code:
window = Tkinter.Tk()
window.mainloop()

Leave a blank line below the import line (for neatness) and type in the 
preceding code. That's it!

4.	 We can now run the program (either by navigating to Run | Run Module or 
by pressing F5), and we will see an empty window appear.

The first line of code imports the Tkinter module, allowing us to access its functions; 
the second line creates a window; and the third line of code tells the window to enter 
its main loop. The main loop causes the window to be shown on the screen and lets 
it wait until any of its buttons are clicked (this is similar to how we had a loop in the 
previous chapter that waited for our controller buttons to be pressed.)

There are a few more very simple things we can do before we move on to creating 
the main program. This extra code must go between the previous two lines. The 
final mainloop line doesn't finish until the window is closed, so any code that comes 
afterwards will run too late to be shown on the screen. First, we can give the window 
a title, as follows:

window.title("Some text here")

We can give the window any title we like. Secondly, we're going to place a simple 
widget in the window that displays some text, as follows:

label = Tkinter.Label(window, text="Hello!")
label.pack()

This code is a little more complex. First, we create a Label widget—a widget to 
display text (or images). When we're creating it, we pass in two arguments: the 
window we've created and the text that needs to be shown. Note that the second 
argument has been given the name text, but we provide the existing window 
without giving it a new name. In Python, functions can have the option of receiving 
lots of different arguments. All of the compulsory ones come first and don't need 
to be given names; the function can tell them apart from the order they are in. After 
that come the optional arguments. We always need to give names to these so that the 
function can tell which arguments have been included and which have been left out. 
We need the first argument because the Label widget needs to know which window 
it will be in. In more advanced GUIs, we can even tell widgets which sections of the 
GUI they should go in. The second line of code packs, the Label widget to work out 
what size it is and start displaying it.

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 86 ]

You might notice that if you run your program now that the window has shrunk 
to fit the Label widget we just added, so we can't see the title anymore! We can fix 
this by telling the window the minimum size it is allowed to be, as shown in the 
following code snippet:

width = 200
height = 50
window.minsize(width, height)

You might like to tweak the width if you have a long window title. You should now 
have a window that looks something similar to this:

Now that the window has a minimum size, you will notice that if you drag the edges 
of the window, you can make it larger; however, you can't make it any smaller.

We're now ready to move on. The following is the complete code for this simple 
example. I've grouped some of the lines together to keep things organized, but the 
main point is that anything involving the way the window looks is placed between 
the window being created and the window's main loop starting:

import Tkinter

width = 200
height = 50

window = Tkinter.Tk()
window.title("Some text here")
window.minsize(width, height)

label = Tkinter.Label(window, text="Hello!")
label.pack()

window.mainloop()

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 87 ]

Getting a map
In this section, we're going to use Google Maps to get an image of our local area to 
display in our window.

No Internet? No problem!
Since Google Maps is an online service, an Internet connection is required to download 
a map. However, if your Raspberry Pi isn't connected to the Internet, there is still a 
way to proceed. Python is cross-platform. This means that it works on lots of different 
computers and operating systems. So long as you have access to another computer that 
does have an Internet connection, all the code in this chapter will work.

Python can be downloaded from http://www.python.org/download/, and the 
code in this book is based on Python 2.7 (Python is often preinstalled on Linux and 
Mac OS X operating systems, and it is best to keep it up to date with your built-in 
packaging system). Once installed on any computer, IDLE will be available and 
should behave exactly as Python 2 does on the Raspberry Pi.

Google Maps
Google has made it very easy to access its maps from the programs that we've 
written ourselves (up to 1000 times per day). All we need to do is create a web 
address with all the information we want about the map.

All addresses start with https://maps.googleapis.com/maps/api/staticmap? 
and contain all sorts of information, separated by & symbols after the question mark:

•	 center=location: This is some text describing the location that the map 
should show. It could be a town name, postal code, or the name of a road or 
building. Web addresses should not contain any spaces, so if your chosen 
location does have spaces, they should be replaced by the + symbol, or the 
special %20 sequence.

•	 zoom=value: This is a number that increases as we zoom in to the map. A 
value of around 13 to 14 seems to give good results for this project, but you 
might like to try other values.

•	 size=widthxheight: These are values in the form of pixels. In this chapter, 
I'm going to use a width of 640 pixels and a height of 480 pixels.

•	 format=type (optional): This denotes the format of the image to be 
downloaded, such as JPEG, GIF and PNG (default). In this chapter,  
we're going to use GIF as it works best with Tkinter.

www.it-ebooks.info

http://www.python.org/download/
https://maps.googleapis.com/maps/api/staticmap?
http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 88 ]

•	 maptype=type (optional): This tells us what view of the map we should  
get. Do we want a satellite image or a roadmap, or do we want to see  
the terrain? If we don't choose a map type, we will get a road map.

•	 sensor=true/false: This tells us if we are using GPS (or something similar) 
to choose the location. For this project, it will always be set to false.

A full list of available options and their explanations can be found online at 
https://developers.google.com/maps/documentation/staticmaps/#URL_
Parameters.

So, an example web address might be https://maps.googleapis.com/maps/api/
staticmap?center=Cambridge,%20UK&zoom=13&size=640x480&format=gif&sen
sor=false. Here, I have chosen the map of Cambridge, UK, with a zoom level of 13, 
and an image that is 640 x 480 pixels and in the GIF format. You may want to type this 
address into a web browser and play with the various options to see what's possible.

Generating the address
So, how do we create these long web addresses automatically in our program? It 
turns out that Python makes this very easy for us with its format function. The 
format function takes some text and looks through it for markers that look like {0}, 
where 0 can be any number. Whenever the function sees one of these markers, it 
replaces it with the argument at that position, as shown in the following examples:

>>> "{0}".format(14)
'14'

>>> "Second = {1}, first = {0}".format(1,2)
'Second = 2, first = 1'

The main thing to look out for is that programming languages like to start counting 
from zero, so if you want to access the first argument of format, you use {0}, and if 
you want the seventh argument, you use {6}.

To generate our address, we can use the following code snippet:

address = "http://maps.googleapis.com/maps/api/staticmap?\
center={0}&zoom={1}&size={2}x{3}&format=gif&sensor=false"\
.format(location, zoom, width, height)

This is just a slightly longer and more complex version of what we've seen already. 
The \ symbols allow us to break the line into multiple parts so it doesn't go off the 
edge of the screen (or page), and they do not show up in the final address if we start 
a new line immediately after the \ symbol.

www.it-ebooks.info

https://developers.google.com/maps/documentation/staticmaps/#URL_Parameters
https://developers.google.com/maps/documentation/staticmaps/#URL_Parameters
https://maps.googleapis.com/maps/api/staticmap?center=Cambridge,%20UK&zoom=13&size=640x480&format=gif&sensor=false
https://maps.googleapis.com/maps/api/staticmap?center=Cambridge,%20UK&zoom=13&size=640x480&format=gif&sensor=false
https://maps.googleapis.com/maps/api/staticmap?center=Cambridge,%20UK&zoom=13&size=640x480&format=gif&sensor=false
http://www.it-ebooks.info/


Chapter 6

[ 89 ]

To make our code more readable and useful, it is best if we put this address creation 
code in a separate function. That way, we can generate addresses any time we like 
when the program is running, without having to copy the code.

Place the following code immediately after the import statement in hellogui.py, 
and then save it to a new file called mapping.py:

import urllib
def getaddress(location, width, height, zoom):
    locationnospaces = urllib.quote_plus(location)
    address = "http://maps.googleapis.com/maps/api/staticmap?\
center={0}&zoom={1}&size={2}x{3}&format=gif&sensor=false"\
.format(locationnospaces, zoom, width, height)
    return address

You'll notice that there's an extra line at the start of the function that uses urllib.
quote_plus to make sure that there are no spaces in the name of the location by 
replacing them with + symbols. It can also handle any other characters that aren't 
allowed in web addresses. We had to import the urllib module first to get access 
to this function. The urllib module is short for URL library and allows us to access 
information over the Internet. Uniform Resource Locator (URL) is just another name 
for a web address. You may want to provide extra options to add extra arguments to 
the function later.

We can now see if our code works. Run the program and close the window that pops 
up—we're not interested in it for the moment. In the Shell (next to the >>> marker), 
type in getaddress("Cambridge, UK", 640, 480, 13), press Enter, and check that 
the link is the same as shown in the earlier example. You can even paste it (without the 
surrounding quotation marks) into a web browser to check that it works.

If you're really keen on controlling things with code, try out the following code 
snippet to see what it does. You can type this in as part of your program, or type it 
into the Shell after you have run the program in the Code Editor:

import webbrowser
webbrowser.open(getaddress("Cambridge, UK", 640, 480, 13))

Downloading an image
Now that we can create a web address for our map, we want to download the image 
to use in our program. To do this, we're going to create another function called 
getmap that uses getaddress. Here's the code snippet:

import base64
def getmap(location, width, height, zoom):

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 90 ]

    address = getaddress(location, width, height, zoom)
    urlreader = urllib.urlopen(address)
    data = urlreader.read()
    urlreader.close()
    base64data = base64.encodestring(data)
    image = Tkinter.PhotoImage(data=base64data)
    return image

We first need to import another module. The base64 module allows us to convert the 
downloaded image data into something that Tkinter can use.

The first thing we do in our new function is create an address using the previous 
function. We can then connect to this address using urllib.urlopen and download 
the data using read. We make sure to tidy up afterwards by using close. (The 
urlreader object might have used some temporary storage that is no longer needed 
now that we have the data).

Unfortunately, the data we downloaded isn't in a form that Tkinter can use, so we 
need to convert it using base64.encodestring. You don't need to understand how 
this works; just be aware that it's there. (If you're interested in what's going on inside 
the module, take a look at http://docs.python.org/2/library/base64.html.) 
Finally, we convert the data into an image using Tkinter.PhotoImage and return it.

Using an image
We now have an image ready to use, so it's time to display it in our program. It is 
possible to put the image inside the Label widget that we already have, but we will 
want to draw on top of it later, so we will use a Canvas widget instead. You can 
think of a Canvas widget as a bit like the canvas an artist would use. It allows us to 
draw all sorts of shapes and text in any color we like. For now, we're just going to 
draw our map.

Replace the two lines of code that mention the Label widget with the following code:

mapimage = getmap(location, width, height, zoom)
canvas = Tkinter.Canvas(window, width=width, height=height)
canvas.create_image(0,0,image=mapimage,anchor=Tkinter.NW)
canvas.pack()

www.it-ebooks.info

http://docs.python.org/2/library/base64.html
http://www.it-ebooks.info/


Chapter 6

[ 91 ]

First, we get the image using our getmap function. We then create a Canvas inside 
our window with a particular width and height. Then, we draw our image on the 
Canvas. We say that we want the northwest (NW) corner of the image to be placed 
at (0,0) coordinates within the Canvas. Since the northwest and (0,0) coordinates 
both mean the top-left corner, and the Canvas is the same size as the image, the 
image will fill the Canvas exactly. Finally, we pack the Canvas widget as we did with 
the Label widget.

One last thing to do is giving some sensible values for location, width, height, and 
zoom. We already have values for the width and height, but we'd like our map to be a 
little larger than our previous window. Replace the old width = and height = lines 
with the following code snippet:

location = "Cambridge, UK"
width = 640
height = 480
zoom = 13

Feel free to experiment with different values. When you run your program, you 
should now see something similar to this:

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 92 ]

I have also updated the title of the window to use location rather than "Some text 
here" from before. If your code isn't working, it's likely that there's either a spelling 
mistake somewhere, some code needs to be moved up or down within the program, 
or Python isn't sure which blocks of code are meant to be inside other blocks. 
Remember that the number of spaces at the beginning of each line is very important. 
The recommendation is to use four spaces for each level of indentation. For example, 
the very first line of a function (in this project) should have no spaces in front of it, 
code inside this function should have four spaces at the start of each line, and code 
inside an if or while block inside that function should be indented with another 
four spaces. If you're stuck, take a look at the code listing near the end of the chapter.

Adding markers
The next thing we want to do is add a marker to the map whenever we click on it 
with the mouse. This can be done in two parts: by detecting the click and reacting to 
the click.

Detecting mouse clicks
Detecting mouse clicks is very simple. Tkinter does most of the work for us. All we 
have to do is bind a function to the mouse button. Once the program has entered its 
main loop, whenever the mouse button creates an event (by being clicked on), the 
function will be executed. Reacting to an event in this way is similar to using a when 
key pressed code block in Scratch. Place the following line of code with the rest of 
the Canvas code before the main loop:

canvas.bind("<Button-1>", canvasclick)

This code says that whenever Button-1 (the left mouse button) is clicked on, run the 
canvasclick function. We'll write this function next.

We can create these bindings for as many buttons and keys as we like and for 
any widget that we like. The "<Button-3>" button is the right mouse button, 
"<space>" is the Space bar, "<Return>" is the Enter key, and "a", "b", "c", and so 
on correspond to the letters. There are even events called "<Enter>" and "<Leave>" 
that can tell when the mouse moves over the widget.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 93 ]

Reacting to mouse clicks
When the mouse button is clicked, an event is given to our canvasclick function. 
The event contains lots of information, including the position of the click, the widget 
that was clicked, and the key that was pressed (if any).

Here's a quick version of canvasclick that should let you make sure that mouse 
clicks are being detected properly. Place it beneath the getmap function as follows:

def canvasclick(event):
    print "Mouse click at position", event.x, event.y

When we run the program, we should now see pairs of numbers being displayed in 
the Shell whenever we click on our map. These numbers should change depending 
on where we click on the map. What we really want, though, is to draw a marker on 
the map so we can highlight interesting points. We'll replace the print line with the 
following code, and a circle will be drawn on the map at each position clicked:

    x,y = event.x, event.y
    widget = event.widget
    size = 10
    widget.create_oval(x-size, y-size, x+size, y+size, width=2)

We're going to use event.x and event.y a few times, so here we've given them the 
more convenient names of x and y. We've done the same thing for event.widget 
(the widget that received this mouse click event), giving it the more convenient name 
of widget. The size variable stores the distance in pixels, from the click position to 
the edge of the circle, that is, the radius of the circle. You can change it if you like.

Finally, we draw the circle using widget.create_oval. The first four arguments 
are the coordinates of the left, top, right, and bottom edges of the circle, and width 
is the width of the line used to draw the circle. You can add extra arguments, such 
as outline="red" to change the color of the line and fill="blue" to change the 
internal color. I particularly like the activeoutline and activefill arguments, 
which work in the same way but only show their colors if the mouse is over the 
marker. Experiment until you have a marker design you like.

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 94 ]

You should now have a program that looks like something similar to the  
following screenshot:

Adding labels
It would be useful if whenever we clicked on the map, along with adding a circular 
marker, we could also add a few words to describe what we're marking.

Basic labels
Getting some text from the program's user is going to be slightly complex, so let's 
create a simple version first to make sure we have the right code structure. Add the 
following two lines of code right at the end inside the canvasclick function:

    label = getlabelname()
    widget.create_text(x, y+2*size, text=label)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 95 ]

The first line of code gets some text from a function that we haven't written yet called 
getlabelname. This function will eventually ask the user to type some text into a 
small pop-up window, but for now, it will just give us a default message. The second 
line of code draws our text at a particular position just underneath the circle. As with 
widget.create_oval earlier, widget.create_text allows the text color to be set 
using the extra arguments of fill="colour" and activefill="colour".

Here is our most basic version of the getlabelname function. We will flesh it out in 
the next section. Since it is used in canvasclick, getlabelname needs to be placed 
somewhere before it in the program. Putting getlabelname immediately above 
canvasclick is a good idea because the two functions are used together, and this 
way, we can see both of them in the Code Editor at the same time:

def getlabelname():
    text = "This is a label"
    return text

When you run your program, you should now see small text labels appear below the 
markers whenever you click on the map.

Pop-up windows
Let's now make getlabelname a little more interesting. We're going to open a new 
window that asks users to give a name for their marker. This window should have 
an instruction for the users telling them what to do, a place for the users to type their 
marker's name, and a button to click when they're finished.

First, we'll create a new window in a similar way to how we made our main 
window. Add the following code at the beginning of getlabelname, somewhere 
before the return line (there's a complete copy of this function at the end of this 
section if you're not sure where a particular piece of code should go):

    popup = Tkinter.Toplevel()
    popup.title("New marker")
    popup.wait_window()

This time, we're using Tkinter.Toplevel instead of Tkinter.Tk. We only use 
Tk for the main window, and use Toplevel for all the others. The wait_window() 
method then behaves like mainloop(), and waits until the window is closed.

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 96 ]

Next, we'll add a label with the instruction for the user. Remember that all the 
contents of a window must be created after the window is created but before  
we start its main loop. Type the following lines of code immediately above  
popup.wait_window():

    label = Tkinter.Label(popup, text="Please enter a label for  
your marker")
    label.pack()

The code so far is very similar to the very first window we created at the beginning 
of the chapter. You might want to try running the program and make sure that  
the new window does appear whenever you click on the map, and that the default 
label appears.

Next, we're going to add a textbox for the user to type into, as follows:

    labelname = Tkinter.StringVar()
    textbox = Tkinter.Entry(popup, textvariable=labelname)
    textbox.pack()
    textbox.focus_force()

There are a couple of new things here. First, we create a StringVar called labelname. 
StringVar is short for String Variable, and string is another word that programmers 
use for text. So, labelname is going to hold a text variable for us. Second, Tkinter's 
name for a textbox is Entry. This reflects the fact that we can enter text into the 
box, rather than simply view the text that is already there. We pass our variable 
to the Entry when it is created. Now, we can access the text in the Entry through 
our variable—we'll get to this soon. As usual, we pack the Entry to prepare it to be 
displayed. Finally, we use focus_force to make sure that the textbox is the thing 
that has the user's attention. The pop-up window will now be the active window, 
and the textbox will be ready to type into. Without this line of code, the user would 
have to click on the textbox themselves before they could type anything in.

Next, we're going to add a button. When the button is clicked, the pop-up window 
should close, and we'll be ready to get the message out of the textbox. Here's the 
code we need:

    button = Tkinter.Button(popup, text="Done")
    button.pack()

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 97 ]

This simply creates a new button that says Done in our new window. With this  
in place, the pop-up window should look finished. If you test your code now,  
you should see this:

However, you'll notice that the button doesn't actually do anything yet. We need to 
give it a command. Update the button creation line as follows:

    button = Tkinter.Button(popup, text="Done", command=popup.destroy)

Our window called popup has a function called destroy which closes the window. 
When the button is clicked, we want this function to be executed, so the window 
closes and we can retrieve the label name that the user typed in. To do this, we pass 
in the function as an extra argument when we create the button. Finally, to get the 
label name, replace the existing text = line with the following line of code just 
before the return line:

    text = labelname.get()

That's it! You should now be able to click on the map, type in a label name, and  
see it appear when you click on Done. Your running program should now look  
like something similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 98 ]

This is what your completed getlabelname function should look like:

def getlabelname():
    popup = Tkinter.Toplevel()
    popup.title("New marker")
    label = Tkinter.Label(popup, text="Please enter a label for your 
marker")
    label.pack()

    labelname = Tkinter.StringVar()
    textbox = Tkinter.Entry(popup, textvariable=labelname)
    textbox.pack()
    textbox.focus_force()

    button = Tkinter.Button(popup, text="Done", command=popup.destroy)
    button.pack()

    popup.wait_window()

    text = labelname.get()
    return text

Code listing
Here is the complete code for the project used in this chapter. It can be used if you're 
getting strange error messages and want to compare your code with something that 
is known to work. It can also help you see what order the various snippets of code 
should be in.

The very first thing in the file should be the import statements. It's a good idea to put 
these in alphabetical order so that we can search through them more quickly when 
we import a lot of modules; this is shown in the following code snippet:

import base64
import Tkinter

import urllib

Next, we have two functions that work together. The first one creates a web address 
and the second downloads the map image from this address, as shown in the 
following code snippet:

def getaddress(location, width, height, zoom):
    locationnospaces = urllib.quote_plus(location)
    address = "http://maps.googleapis.com/maps/api/staticmap?\

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 99 ]

center={0}&zoom={1}&size={2}x{3}&format=gif&sensor=false"\
.format(locationnospaces, zoom, width, height)
    return address

def getmap(location, width, height, zoom):
    address = getaddress(location, width, height, zoom)
    urlreader = urllib.urlopen(address)
    data = urlreader.read()
    urlreader.close()
    base64data = base64.encodestring(data)
    image = Tkinter.PhotoImage(data=base64data)
    return image

Then, we have the functions to deal with the pop-up window, which collects the 
label to give to a marker on the map. The first function tells the window what to do 
when Done is clicked on and the second then uses this function when it builds the 
window, as shown in the following code snippet:

def getlabelname():
    popup = Tkinter.Toplevel()
    popup.title("New marker")
    label = Tkinter.Label(popup, text="Please enter a label for your 
marker")
    label.pack()

    labelname = Tkinter.StringVar()
    textbox = Tkinter.Entry(popup, textvariable=labelname)
    textbox.pack()
    textbox.focus_force()

    button = Tkinter.Button(popup, text="Done", command=popup.destroy)
    button.pack()

    popup.wait_window()

    text = labelname.get()
    return text

We then have the function that is executed whenever the map is clicked. This makes 
use of the preceding functions, as follows.

def canvasclick(event):
    x,y = event.x, event.y
    widget = event.widget
    size = 10

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 100 ]

    widget.create_oval(x-size, y-size, x+size, y+size, width=2)
    label = getlabelname()
    widget.create_text(x, y+2*size, text=label)

Finally, we have the following code that has to be executed when we first run the 
program (this function is traditionally called main):

def main():
    location = "Cambridge, UK"
    width = 640
    height = 480
    zoom = 13

    window = Tkinter.Tk()
    window.title(location)
    window.minsize(width, height)

    mapimage = getmap(location, width, height, zoom)
    canvas = Tkinter.Canvas(window, width=width, height=height)
    canvas.create_image(0,0,image=mapimage,anchor=Tkinter.NW)
    canvas.bind("<Button-1>", canvasclick)
    canvas.pack()

    window.mainloop()

if __name__ == "__main__":
    main()

Extensions
There are lots of things we could do now that we have a basic working GUI. Here are 
a few possible ideas:

•	 Adding buttons to zoom in or out
•	 Adding a textbox and button to update the location
•	 Adding a way to select different styles of map marker
•	 Selecting whether the map is a satellite image or a road map
•	 Saving and loading the map settings (the location, position of markers, labels, 

and so on)
•	 Allowing markers and their labels to be changed after they have been created

Complete details on how to use Tkinter can be found online at  
https://wiki.python.org/moin/TkInter.

www.it-ebooks.info

https://wiki.python.org/moin/TkInter
http://www.it-ebooks.info/


Chapter 6

[ 101 ]

Layout
In this chapter, we have used only the pack layout, but there are also other ways to 
tell Python where you want your widgets to be displayed.

The pack layout is useful to fill the screen with a single widget (similar to our map) 
or to place widgets in a line (similar to our window when we type in label names).

The grid layout allows us to line up widgets both vertically and horizontally. All 
the widgets that we put in the same column form a vertical line, and all the widgets 
in the same row form a horizontal line. If no row or column is given, Python will 
put the widget in the first available place it finds. We can also have a widget reach 
across (or span) multiple rows or columns. Try replacing the three .pack() lines in 
getlabelname with the following lines of code:

    label.grid(columnspan=2)
    textbox.grid(column=0, row=1)
    button.grid(column=1, row=1)

The pack and grid layouts do not work together. If you would 
like to use one of these layouts, you will need to make sure that 
the same layout is used for every widget.

There is also a third option, place, which allows us to set the exact position of the 
widget. This isn't used often because pack and grid do such a good job, and it has 
too many necessary arguments to summarize here.

Additional widgets
The next few sections give some very short code snippets, showing how widgets that 
we haven't covered in this chapter can be created. If you want to test them out, put 
the code just before the window.mainloop() line in your program. The new widget 
will usually appear just below the map when you run the program. If you run out of 
space on your screen, try reducing the height of the map to make more space.

Checkbutton
Checkbutton can either be empty or contain a check (tick). The following shows you 
the code snippet for the checkbutton:

state = Tkinter.StringVar()
checkbutton = Tkinter.Checkbutton(window, text="Button",
    variable=state, onvalue="checked", offvalue="unchecked")
checkbutton.pack()

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 102 ]

Along with the button, we also need a StringVar variable (which is a text variable). 
The button has a particular value when it is on (onvalue) and a particular value 
when it is off (offvalue). These values are stored in the StringVar variable. To 
access the current state of the button, use state.get().

Frame and LabelFrame
Frames and LabelFrames simply contain other widgets. They allow us to structure 
lots of widgets better. A Frame is a plain container and a LabelFrame adds an outline 
and a label, as shown in the following code snippet:

labelframe = Tkinter.LabelFrame(window, text="LabelFrame")
button = Tkinter.Button(labelframe, text="Button")
button.pack()
labelframe.pack()

As you can see, we add Button to LabelFrame in the same way we would add it to a 
window, by passing LabelFrame as the first argument when we create the button.

Listbox
Listbox has a different option on each line. Options can be selected and deselected 
by being clicked on. Let's have a look at the following code snippet:

options = Tkinter.StringVar()
options.set("Option1 Option2 Option3")
listbox = Tkinter.Listbox(window, listvariable=options)
listbox.pack()

Along with Listbox, we also need a StringVar variable to hold the available 
options. Each option is separated by a space. We can access the number of the 
current selection using listbox.curselection() (remember that programmers  
like to count from zero, so the first option is at position 0.)

Menu
Menu contains several different options, and some kind of action is taken when an 
option is clicked:

topmenu = Tkinter.Menu(window)
dropmenu = Tkinter.Menu(topmenu)
window["menu"] = topmenu
topmenu.add_cascade(label="Menu", menu=dropmenu)
dropmenu.add_command(label="Option1", command=function1)
dropmenu.add_command(label="Option2", command=function2)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 103 ]

Here, we are creating two menus. The first (topmenu) goes across the top of the 
screen. The second (dropmenu) drops down from the top menu when it is clicked. 
The topmenu can contain any number of drop-down menus, these are added using 
topmenu.add_cascade. The dropmenu can contain any number of options, these  
are added using dropmenu.add_command. A different function is executed when  
each of the options is clicked (I've just used the names function1 and function2  
as examples. You will need to actually name the functions in your program).

Menubutton
The Menubutton option is very similar to the dropdownmenu option that was used 
in the previous section, except that it is positioned as a button instead of being 
positioned within another menu at the top of the window. Take a look at the 
following code snippet:

menubutton = Tkinter.Menubutton(text="MenuButton")
menu = Tkinter.Menu(menubutton)
menubutton["menu"] = menu
menu.add_command(label="Option1", command=function1)
menu.add_command(label="Option2", command=function2)
menubutton.pack()

Message
Message is a lot like Label, which we have already seen, except that it is designed for 
longer pieces of text and can spread across multiple lines, as shown in the following 
code snippet:

message = Tkinter.Message(window, text="This is a message")
message.pack()

OptionMenu
OptionMenu gives a drop-down list, allowing the user to select one of the fixed 
number of options, as shown in the following code snippet:

state = Tkinter.StringVar()
optionmenu = Tkinter.OptionMenu(window, state, "Option1",\
                                               "Option2")
optionmenu.pack()

We need a StringVar variable to hold the current selection, and this selection can be 
accessed using state.get().

www.it-ebooks.info

http://www.it-ebooks.info/


Making an Interactive Map of your City

[ 104 ]

Radiobutton
Radiobuttons are usually used in groups, and only one can be selected at a time,  
as shown here:

state = Tkinter.IntVar()
radiobutton1 = Tkinter.Radiobutton(window, text="Option1",\
                                   value=1, variable=state)
radiobutton2 = Tkinter.Radiobutton(window, text="Option2",\
                                   value=2, variable=state)
radiobutton1.pack()
radiobutton2.pack()

We need a variable to hold the current selection. This time we're using an IntVar 
variable (an integer, which is a whole number variable), and each button has a 
value that will be stored in the variable when that button is selected. The key to 
only having one radio button selected at a time is to give the whole group the same 
variable argument. The current selection can be accessed using state.get().

Scale
Scale gives a slider that can be used to choose a value between two limits,  
as shown here:

state = Tkinter.IntVar()
scale = Tkinter.Scale(window, label="Scale", from_=0, to=10,\
                      variable=state)
scale.pack()

We need IntVar (a whole number variable) to hold the current value, and we can 
choose the smallest and largest possible values using the from_ and to arguments. 
We can get the current value of Scale using state.get().

Spinbox
Spinbox is a box containing a number. Next to the box are two small arrow buttons 
that make the number larger or smaller, as shown here:

spinbox = Tkinter.Spinbox(window, from_=0, to=100, increment=10)
spinbox.pack()

We choose the smallest and largest possible values for Spinbox using the from_ and 
to arguments, and we choose how much the value should change by when a button 
is pressed using increment. We can get the current value using spinbox.get().

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 105 ]

Summary
In this chapter, we learned how to make a GUI in Python. We learned how to create 
all sorts of different widgets that let the GUI do interesting things, and we also 
learned how to react to events, such as mouse buttons being clicked.

In particular, we created a mapping program that lets us click on the map to mark 
points of interest and even add useful descriptions for the markers. We have the 
knowledge and skills to add many extra features to our program by continuing to 
add buttons and other widgets.

In the next chapter, we'll explore how we can create music with code.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


[ 107 ]

Building Beats with Sonic Pi
In this chapter, we're going to use a new application called Sonic Pi to create  
music using code. We will see how it's possible to create tunes and how the  
power of programming allows us to experiment and change things much  
more easily than we can with physical instruments.

This chapter is centered on sound, so you will need some speakers or headphones that 
can plug into the Raspberry Pi's audio port, or an HDMI monitor with built-in speakers.

Sonic Pi
Sonic Pi is a program designed specially for the Raspberry Pi. It allows us to 
create music by writing code. You can run Sonic Pi by choosing Sonic Pi in the 
Programming menu on the Raspberry Pi's desktop. Here's what you'll see:

www.it-ebooks.info

http://www.it-ebooks.info/


Building Beats with Sonic Pi

[ 108 ]

Right at the top, there are all the buttons for controlling Sonic Pi's behavior. We can 
start and stop a tune playing, save our code, and record our own sounds. We can also 
decrease or increase the size of the text that our code is written in and neaten it up.

Below those buttons, on the left is the Code Editor, where we will type all of our 
code. Note that there are multiple Workspace tabs. These allow us to have multiple 
programs open at a time and switch between them easily. On the right is the Log. 
This will display information about every note that is played so that you can see 
what Sonic Pi is doing.

At the bottom is the Help system. This has example code and descriptions of all the 
sounds and programming features available.

Sonic Pi uses its own text-based programming language. It is similar to Python in 
some ways and different in others, but all that is important is that we will be doing 
the same basic operations. We will see throughout the rest of the chapter that all 
the languages we have seen so far share a core set of features and these features are 
common to almost every programming language that exists. If you can understand 
how these features work, all you need to do to learn a new language is learn how 
that language presents those features.

Sonic Pi is installed as part of the default Raspbian operating system 
on the Raspberry Pi and is also available on Windows and Mac OS X. 
It can be downloaded from http://sonic-pi.net/.

Getting started with Sonic Pi
Getting Sonic Pi to create a sound is very simple. Type the following code in the 
Code Editor and click on Run:

play 60

You should hear a tone.

If you do not hear anything, verify that your speakers are 
switched on and that the sound is not muted.

Here, we represent different notes as numbers; this is a convenient representation 
that the Raspberry Pi understands. A higher number represents a higher note.  
Try it for yourself; change the number and click on Run.

www.it-ebooks.info

http://sonic-pi.net/
http://www.it-ebooks.info/


Chapter 7

[ 109 ]

If you know a little about music, you might be familiar with the letter names of 
notes. Sonic Pi knows these too! Try this code:

play :C

This is the same note as before, but now it has a name. Any note from A to G will 
work, and you can also place a b or s after the name to make the note flat (lower)  
or sharp (higher).

Finally, we can put a number at the end of the note name to say which octave the note 
is in. Again, a higher number will give a higher pitched sound. Here's an example 
note that combines all the previously shown features:

play :Fs4

An octave is a range of sounds where the lowest pitch is exactly half 
that of the highest pitch. The repeating sequence of keys on a piano 
represents different octaves. An octave covers the notes A, B, C, D, E, 
F, and G; as well as A# (or Bb), C# (or Db), D# (or Eb), F# (or Gb), and 
G# (or Ab). Two notes that are an octave apart tend to sound good 
when played together.

Part of the beauty of representing notes as numbers in Sonic Pi is that we do not have 
to stick to whole numbers, as we do with many physical instruments. We can play 
note 60.5 or 71.419, or any other number we like.

Creating a tune
Any real piece of music is going to contain more than one note. Type the following 
code in the Code Editor and click on Run. What do you hear?

play 60
play 65
play 72

That might not have sounded the way you expected! All the notes played at the same 
time. Sonic Pi will play every note it sees until it reaches a sleep command, upon 
which it waits for a certain amount of time and then continues. This is useful when 
we want to play multiple notes at once, but to create a tune, we need them all to be 
separate. Put a sleep command after each play command, like this:

play 60
sleep 1
play 65

www.it-ebooks.info

http://www.it-ebooks.info/


Building Beats with Sonic Pi

[ 110 ]

sleep 1
play 72
sleep 1

That's better! All the notes now play one after another. The number after the sleep 
command is the number of seconds to wait before playing the next note (or notes). 
Again, we can use any number we like, and the number can be different for each 
sleep command.

Now, music is largely based on repetition, so let's learn how to create loops in Sonic 
Pi. It's very simple—add a loop do and an end around the code that we want to 
repeat, like this:

loop do
  play 60
  sleep 1
  play 65
  sleep 1
  play 72
  sleep 1
end

The do and end tell Sonic Pi which lines of code are in the code block and the loop 
tells it what should be done with the block. In this case, we want the code to repeat 
forever. We don't need to indent the code within the block (as we do in Python), but 
it helps make the code more readable, especially when we have complex structures 
such as loops within loops. At any time, you can click on the Align button at the top 
of the window and it will choose what it thinks is the best indentation for your code.

If you like to repeat the code a fixed number of times, replace loop with any number 
followed by .times. For example, the first line can be 10.times do if you want to 
repeat the code ten times.

Finally, let's tweak our code to create a random tune. The first thing we're going  
to do is put all the notes we want to play into a list. We can do this in exactly the 
same way as we did in Python. Here's a list that contains the three notes from the 
previous example:

[60, 65, 72]

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 111 ]

See how we separate each number in the list with commas, and we wrap the whole 
thing with square brackets. You can change any of these numbers or add new ones if 
you like. To get a random number from our list, we will use the choose function that 
Sonic Pi provides. Here is a new code block to put inside our loop:

  play choose([60, 65, 72])
  sleep 1

If you run this code, you should hear a sequence of random notes taken from the list.

New sounds
Up until now, we've been using the default sound in Sonic Pi, called beep, but there 
are many other sounds available.

Open up a couple of empty lines before the loop, type in use_synth, and then press 
the spacebar. Synth is short for synthesizer, which is a program or machine that 
generates sound. You will see a long list of sound names appear, with beep at the 
top. Choose one of the sounds by double-clicking on it or typing enough of its name 
so that it is the only option. Then press Enter. If you run your code now, you will 
hear the same notes, but the sounds will be different. Try a few different sounds to 
see which ones you like.

The use_synth function routine changes the sound of all notes until the next use_
synth routine is used. It is possible to change the sound of notes as many times as 
you like within a song. We can even play a trick similar to the trick that we used 
when playing a random note. Try adding this line of code inside your loop:

  use_synth choose([:pretty_bell, :dsaw, :hollow])

Again, feel free to add or remove any elements from this list. You should now hear 
random notes being played in random styles.

We can also change the length of time for which each note plays. There are three 
main parts to this:

•	 attack: This is the number of seconds taken to increase the volume to  
the maximum

•	 sustain: This is the number of seconds spent at maximum volume
•	 release: This is the number of seconds taken to decrease the volume to zero

The sum of all three of these times will give the total duration of our sound.  
The default attack and sustain values are zero; release is the most important 
value in most cases.

www.it-ebooks.info

http://www.it-ebooks.info/


Building Beats with Sonic Pi

[ 112 ]

To use these features, add them at the end of the play command. You can use all 
three of them or none, or any number in between. Here's an example:

play 60, attack: 0.5, sustain: 0.1, release: 1

See how each option is separated with a comma and the option's name and its value 
are separated by a colon.

A real tune
So, we've had fun creating random tunes; now let's try making something a little 
more structured. Open a fresh workspace by clicking on one of the Workspace tabs 
underneath the Code Editor. This is where we'll create our new tune. You can switch 
back to your previous program any time by clicking on its tab.

In this section, we're going to build on the same piece of code, getting the sound we 
produce closer and closer to a tune you might know. How far will you get before you 
recognize the tune? A complete code listing is at the end of this chapter just in case 
you get stuck.

Here's the very first version of the code— you might recognize it already!

  play :G
  sleep 1
  play :G
  sleep 1
  play :G
  sleep 1
  play :Eb
  sleep 1
  play :Bb
  sleep 1
  play :G
  sleep 1
  play :Eb
  sleep 1
  play :Bb
  sleep 1
  play :G
  sleep 1

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 113 ]

This code is simple but long. It's very easy to miss a line, and it's boring to write 
sleep 1 so many times. Let's tidy it up a little by writing a function to do the work 
for us. This function will take a list of all the notes we want to play and go through 
them in sequence, playing each note and then sleeping. By doing this, it will be much 
easier to extend the song later.

We've seen similar functions before in Python. Here's how they look in Sonic Pi:

define :play_notes do |notes|
  notes.each do |note|
    play note
    sleep 1
  end
end

This function (and the short snippets we'll add soon) can replace all of the code we 
had previously. On the first line, we use define to define the function. We call it 
:play_notes (function names must begin with a colon), and we have an argument 
called notes. If we wanted multiple arguments, we would have separated them with 
commas between the two pipes. Finally, there is a do to show that this is the start of a 
code block.

On the second line, we begin our loop. We say that we want to look at each element 
in the list called notes and that inside the loop body, we will call the current element 
of the list note. Again, we have a do to show that we are starting the loop code block.

The next two lines form the body of the loop and should look familiar to you; we are 
playing the current note from the list and sleeping for one second.

The final two lines end the code blocks that we are in. We close the most recently 
opened block first; the first end closes the loop, and the second end closes the 
function definition.

Now, we need a list of notes to pass to the function. These are the same notes we've 
seen already, but held in a list instead of played individually:

line1 = [:G3, :G3, :G3, :Eb3, :Bb3, :G3, :Eb3, :Bb3, :G3]

Finally, we call the function using our list as the argument:

play_notes line1

www.it-ebooks.info

http://www.it-ebooks.info/


Building Beats with Sonic Pi

[ 114 ]

If you run the code now, it should sound exactly the same as it did before. However, 
the program is now much shorter and easier to modify. For example, let's say that 
we decide that we don't want sleep for one second; we want sleep for some other 
length of time. Previously, we would have had to change the nine sleep commands, 
but now, there's only one sleep command to change. This makes our life easier, and 
also reduces the risk of forgetting to make all the necessary changes.

I think 0.8 is a good sleep period for this tune—make this change now. If you run 
this code, you'll notice that it sounds a little strange. Each note plays for one second, 
but the next note starts earlier than that, so there is an overlap. We can fix this by 
adding release: 0.8 to the play command to reduce the length of each note 
(remember to separate it from the rest of the play command with a comma).

Now we have a similar problem to before, we're using the same number in multiple 
places and we want to make sure that they're always the same, just in case we make 
changes later. Let's store this number in a variable and use the variable name inside 
the loop. Before defining the function, add a line of code, like this:

pace = 0.8

Then, replace all the 0.8 numbers inside the function with pace.

Let's make one more change before we continue; we want to use a more appropriate 
sound than a simple beep. Add this line of code before calling the function:

use_synth :dsaw

Your program should now look something like this:

pace = 0.8

define :play_notes do |notes|
  notes.each do |note|
    play note, release: pace
    sleep pace
  end
end

line1 = [:G3, :G3, :G3, :Eb3, :Bb3, :G3, :Eb3, :Bb3, :G3]

use_synth :dsaw

play_notes line1

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 115 ]

Adding rhythm
Do you recognize the tune yet? One of the most important missing elements is 
rhythm—all the notes are currently played in an identical way.

Let's add another list of numbers that represents how long each note should be 
played. We'll use 1 to represent a normal-length note, 2 to represent one that lasts 
twice as long, and 0.5 for a half-length note. The actual length of the note will be 
controlled by our pace variable. Add this code just above the line1 list:

rhythm = [1, 1, 1, 0.75, 0.25, 1, 0.75, 0.25, 2]

Now, if we can modify our :play_notes function to play each note in line1 for the 
amount of time shown in rhythm, our tune should sound much better. Here's a new 
version of the function, with the changes highlighted in bold:

define :play_notes do |notes, durations|
  together = notes.zip(durations)
  together.each do |note, duration|
    play note, release: pace * duration
    sleep pace * duration
  end
end

In the first line, we add an extra argument to the function, called durations. In the 
second line, we use the zip function to merge the two arguments into a single list, 
like this:

lista = [a1, a2, a3]
listb = [b1, b2, b3]
lista.zip(listb) = [ (a1, b1), (a2, b2), (a3, b3) ]

As you can see, zip pairs the first element of each list, the second element of each 
list, and so on. This allows us to access a note and its duration at the same time in the 
third line. Finally, inside the loop body, we multiply the pace by the duration of each 
particular note.

The last thing to change is the line where we run the :play_notes function. Now 
that the function takes two arguments, we need to provide it with two. Change the 
final line of your program so that it says this:

play_notes line1, rhythm

www.it-ebooks.info

http://www.it-ebooks.info/


Building Beats with Sonic Pi

[ 116 ]

If you play the tune now, it should sound much more recognizable. What's more, 
we can easily add a second line to the tune now that we have everything set up. The 
rhythm will be the same, with only the notes being different. Add the following lines 
to the end of your program:

line2 = [:D4, :D4, :D4, :Eb4, :Bb3, :G3, :Eb3, :Bb3, :G3]
play_notes line2, rhythm

Your program should now look something like the following. I've done only a small 
amount of rearrangement to put similar pieces of information close to each other:

pace = 0.8

define :play_notes do |notes, durations|
  together = notes.zip(durations)
  together.each do |note, duration|
    play note, release: pace * duration
    sleep pace * duration
  end
end

rhythm = [1, 1, 1, 0.75, 0.25, 1, 0.75, 0.25, 2]
line1 = [:G3, :G3, :G3, :Eb3, :Bb3, :G3, :Eb3, :Bb3, :G3]
line2 = [:D4, :D4, :D4, :Eb4, :Bb3, :G3, :Eb3, :Bb3, :G3]

use_synth :dsaw

play_notes line1, rhythm
play_notes line2, rhythm

Bass line
We now have a nice tune, but what happens if we want to add a bass line to it, or any 
sort of sound that plays at the same time as the melody?

We could, of course, write our program so that every note played is either part of the 
melody or the bass line, but this will be very difficult to do, and there will be lots of 
effort spent switching between sound styles. Instead, we're going to use something 
called a thread. A thread allows one piece of code to run at the same time as another 
piece of code. We can have as many threads as we like in a program, to allow any 
number of pieces of code to run together.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 117 ]

To create a thread in Sonic Pi, use the in_thread code block:

in_thread do
  use_synth :dsaw

  play_notes line1, rhythm
  play_notes line2, rhythm
end

Notice that we don't have to put much of the program inside the thread. Function 
definitions and our lists can stay outside, in case any other threads want to access 
them. Our function calls go inside because these are the things that we want to 
happen at the same time as other parts of the music. Interestingly, we also put the 
use_synth syntax inside the thread—each thread can have its own synthesizer, so 
we do not need to change it every time a different thread plays a note.

Let's now switch to a fresh workspace so that we can work on the bass line without 
the melody getting in the way. Click on a new tab underneath the Code Editor.

The first thing we want to do is find a sound that can be our drumbeat. Some 
synthesizers can do quite well at this, but Sonic Pi has another feature that can 
do even better—samples. A sample is a piece of a sound recording (rather than a 
sound generated by the computer) and Sonic Pi has samples of several different 
instruments and lots of other things. To play a sample, type in sample and then press 
the spacebar. Again, you'll see a long list of available sounds. Double-click on one 
and click on Run to see how it sounds. Try this with as many samples as you like. 
You can even record your own samples by clicking on the Rec button at the top of 
the window.

For this tune, I think :drum_tom_lo_hard is a good sample to use, so use this one 
when you have finished experimenting. If you click on Run, you'll hear that this is a 
fairly normal drumbeat. We will use this beat to form our bass line.

However, the sound lasts quite a long time and we will want it to go a little quicker 
for our program. The sample function allows us to choose the rate at which a 
sound is played; the default is 1. A higher number means the sound is played more 
quickly, and a lower number means the sound is played slower. Try this out using 
the following line:

sample :drum_tom_lo_hard, rate: 2

www.it-ebooks.info

http://www.it-ebooks.info/


Building Beats with Sonic Pi

[ 118 ]

Also feel free to try other rates and other samples. You'll notice that besides the length 
of the sound changing, the pitch changes as well. Unfortunately, this isn't what we 
want—the pitch of the original drum beat was good. Instead, we're going to return to 
the same attack, sustain, and release options as we saw with use_synth:

sample :drum_tom_lo_hard, attack: 0, sustain: 0, release: 0.2

We now have a drum beat at the normal pitch, but the sound doesn't last very long, 
and so it sounds punchier. We're going to be using this sound a lot, so it will be 
useful to put it inside a function that is dedicated to playing just this sound. This 
approach will give us a much shorter name for the sound, and so make our code 
easier to read. Here's the function:

define :drum do
  sample :drum_tom_lo_hard, attack: 0, sustain: 0, release: 0.2
end

See how this function doesn't have any arguments at all—there are no vertical bars 
on the first line. This means that this function always does exactly the same thing, 
which is what we want. To play the beat now, we just need to type drum.

We're now going to use a similar technique to the one we used with the melody to 
play our drum with a given rhythm. We'll use a list that tells us how long to wait 
between drumbeats and we'll use a function to take that list and play our drum 
sound. The function only takes the rhythm this time. It doesn't need any notes 
because every drumbeat is the same. Here's the additional code needed to do this:

pace = 0.8

drum_rhythm = [1,
               0.625,
               0.125, 0.125, 0.125, 0.5,
               0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.75]

define :play_beat do |beat|
  beat.each do |pause|
    drum
    sleep pace * pause
  end
end

play_beat drum_rhythm

Here, drum_rhythm is our list of times between each beat. There are lots of beats,  
so I've spread them over multiple lines and the beats are quite close together,  
so the numbers are small.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 119 ]

We also have the :play_beat function, which is very similar to the :play_notes 
function we used previously. Since the function uses pace—but pace was created in 
a different tab, and so it is not accessible from here—I have copied pace and placed it 
at the top.

Finally, we run our function with the list, and you can listen to the result by clicking 
on Run.

We're now ready to copy our bass line code to our program containing the  
melody. Copy all of the code in this tab, switch to the tab containing the melody, 
and paste the code at the bottom. Delete the extra pace = 0.8 line—we only need 
the original one. If you click on Run, you should now hear the melody and bass line 
playing together!

But wait, it doesn't sound quite right! The bass line finishes much sooner than the 
melody. We need to put the bass line inside a loop to play it multiple times. Here, we 
have a choice. We can either play the bass line four times so that it lasts for exactly 
the same amount of time as the melody, or we can play the bass and melody forever. 
I'm going to use the first option in this example:

4.times do
  play_beat drum_rhythm
end

More fun
Our tune is now finished and hopefully you recognize it, so the rest of this section 
shows you some more fun features of Sonic Pi. All of these are optional. I don't think 
they improve this particular tune, but they will definitely be useful if you go on to 
create your own music.

So far, we've seen that Sonic Pi shares features such as loops, lists, functions, and 
randomness with Python (and almost every other programming language). One 
main shared feature that we haven't used yet in Sonic Pi is if. This controls whether 
something happens or not.

For this example, we're going to randomly choose whether each note is played out of 
the left or the right speaker.

www.it-ebooks.info

http://www.it-ebooks.info/


Building Beats with Sonic Pi

[ 120 ]

Inside the :play_notes function, take a look at the play line. It has another option 
called pan to select which speaker the sound plays from. The default is 0, where 
both speakers play. The value -1 means only the left speaker, and 1 means only the 
right speaker. Any number in between is also possible. Here's some code that can go 
inside the loop to randomly choose a speaker:

    if one_in(2)
      speaker = -1
    else
      speaker = 1
    end

The one_in(2) function behaves like a coin toss; it will give true one in every  
two times we use it (on average) and false the rest of the time. We can also mimic  
a six-sided die using one_in(6) and any other positive number works as well. The 
if block contains what happens if one_in gives us true and the else block tells 
what will happen if it gives false.

Now that we have this code, we just need to modify the play line to use this  
speaker value:

    play note, release: pace * duration, pan: speaker

Code listing
This section gives a complete listing of the code used in this chapter. You can refer 
to it if your code is not working to see what changes need to be made. Some of the 
code blocks have been moved around within the program to keep similar parts of the 
program together. This can make things easier to read, but it is completely optional. 
The following is the complete code used in the chapter:

pace = 0.8

define :play_notes do |notes, durations|
  together = notes.zip(durations)
  together.each do |note, duration|
    if one_in(2)
      speaker = -1
    else
      speaker = 1
    end
    play note, release: pace * duration, pan: speaker

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 121 ]

    sleep pace * duration
  end
end

define :drum do
  sample :drum_tom_lo_hard, attack: 0, sustain: 0, release: 0.2
end

define :play_beat do |beat|
  beat.each do |pause|
    drum
    sleep pace * pause
  end
end

rhythm = [1, 1, 1, 0.75, 0.25, 1, 0.75, 0.25, 2]
line1 = [:G3, :G3, :G3, :Eb3, :Bb3, :G3, :Eb3, :Bb3, :G3]
line2 = [:D4, :D4, :D4, :Eb4, :Bb3, :G3, :Eb3, :Bb3, :G3]

drum_rhythm = [1,
               0.625,
               0.125, 0.125, 0.125, 0.5,
               0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.75]

in_thread do
  use_synth :dsaw

  play_notes line1, rhythm
  play_notes line2, rhythm
end

4.times do
  play_beat drum_rhythm
end

www.it-ebooks.info

http://www.it-ebooks.info/


Building Beats with Sonic Pi

[ 122 ]

Summary
In this chapter, we used Sonic Pi to create our own music. We went from random 
sounds to a full tune with a drumbeat and saw how the programming ideas you 
learned in previous chapters can be used naturally to describe music.

Throughout this book, you have learned about the Raspberry Pi and what it can 
be used for. You also learned some core programming concepts and saw how they 
apply to Scratch, Python, and Sonic Pi. They apply to many other programming 
languages too. We saw how programming can be a creative skill and can be used to 
create games or build useful tools. Above all, I hope you've found programming fun.  
It's a really valuable skill to learn and can provide unlimited entertainment.

If you've enjoyed this book and would like to continue your Raspberry Pi exploration, 
here are a few related books from Packt Publishing that you might find interesting:

•	 Scratch 1.4: Beginner's Guide
•	 Raspberry Pi Cookbook for Python Programmers
•	 Instant Minecraft: Pi Edition Coding How-to
•	 Raspberry Pi for Secret Agents

www.it-ebooks.info

http://www.it-ebooks.info/


[ 123 ]

Index
A
Adafruit

URL  68
address

obtaining, for map  88, 89
Angry Birds™ game

about  37
finishing  47
level, creating  41
physics, adding  46
scoring  50

animation
creating, with Scratch  21

B
bind  92

C
Canvas widget  90
character, Angry Birds™ game

initializing  42
launching  44
moving, with keyboard  42

Checkbutton  101
code blocks, Scratch

control  24
looks  24
motion  24
operators  24
pen  25
sensing  24
sound  24
URL  24
variables  25

Code Editor  56
conditionals  61

D
dictionary  59

E
extensions, Angry Birds™ game

adding  51

F
Frame  102
function

about  62
calling  54
defining  54, 63, 64

G
game, coding

about  72
completing  79
controller, using  74, 75
implementing  77, 78
random behavior  73
time limit, adding  75, 76

game controller
buttons, adding  69-71
connecting, to Raspberry Pi  71, 72
controller base  69
creating  68
requisites  67, 68

General-Purpose Input/Output (GPIO)  71

www.it-ebooks.info

http://www.it-ebooks.info/


[ 124 ]

Google Maps
about  87
references  87

Graphical User Interface (GUI)  83
grid layout  101

H
Hello world! program

about  84
writing  84-86

I
If-then-else method  34
image

downloading, for map  89
interactive animation

about  29, 30
If-then-else method, using  34, 35
movements, adding  32
sprite count  33, 34
variables  31

K
key  59
keyboard version  80
key-value pair  60

L
LabelFrame  102
labels

adding  94
basic labels  94
pop-up windows  95-98

layout
about  84, 101
grid layout  101
pack layout  101

Listbox  102
lists  56
loop  60

M
map

address, generating for  88, 89

image, downloading for  89
image, using for  90, 92
obtaining  87

markers
adding  92

material requisites, Raspberry Pi
about  2
inputs  5
network  7
power supply  3
storage  4
videos  6

Menu  102
Menubutton  103
Message  103
mouse clicks

detecting  92
reacting to  93, 94

N
NOOBS

URL  9

O
OpenELEC  18
OptionMenu  103
overscan settings  19

P
package system  17
pack layout  101
phrases

creating  58
generating, programs used  55
lists  56
randomness, adding  57, 58

physics, Angry Birds™ game
adding  46
bounce, adding  46, 47
gravity, adding  46

Pi breakout board  68
Python

about  53, 54
function, calling  54
modules, URL  57

www.it-ebooks.info

http://www.it-ebooks.info/


[ 125 ]

programming  55
references  55, 87

R
Radiobutton  104
Raspberry Pi

about  1
common issues, troubleshooting  19
forums, URL  19
game controller, connecting to  71, 72
ls command  16
material requisites  2
OS, installing  9
software, installing  17
software, updating  17
starting up  11-14
URL, for checking device compatibility  3
using  14

Raspberry Pi Swag
URL  4

RaspBMC  18
real tune

about  112-114
bass line  116-119
fun features  119
rhythm, adding  115, 116

RPi VerifiedPeripherals
URL  6

S
samples  117
Scale  104
Scratch

about  21-23
animation, alternative way  28, 29
code blocks  24, 25
elements  22, 23
Hello world! program, creating  23, 24
rotating cat  25, 26
scene, setting  26, 27
URL  21
used, for creating animation  21

SD card
preparing  8-10

SD Formatter
URL  9

Shell  56
Sonic Pi

about  107, 108
sound, creating  108, 109
URL  108

sounds  111
Spinbox  104
synthesizer  111

T
Tab key  16
thread  116
Tkinter

about  84
URL  100

Tk toolkit  84
tune

creating  109, 110

U
Uniform Resource Locator (URL)  89

V
value  59
variable  114

W
widgets

about  84, 101
Checkbutton  101
Frame  102
LabelFrame  102
Listbox  102
Menu  102
Menubutton  103
Message  103
OptionMenu  103
Radiobutton  104
Scale  104
Spinbox  104

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Thank you for buying  
Raspberry Pi Projects for Kids

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/


Raspberry Pi for Secret Agents
Second Edition
ISBN: 978-1-78439-790-6              Paperback: 206 pages

Turn your Raspberry Pi into your very own secret 
agent toolbox with this set of exciting projects

1.	 Turn your Raspberry Pi into a multipurpose 
secret agent gadget for audio/video 
surveillance, Wi-Fi exploration, or playing 
pranks on your friends.

2.	 Detect an intruder on camera and set off 
an alarm and also find out what the other 
computers on your network are up to.

3.	 Full of fun, practical examples and  
easy-to-follow recipes, guaranteeing  
maximum mischief for all skill levels.

Raspberry Pi Robotic Projects
ISBN: 978-1-84969-432-2             Paperback: 278 pages

Create amazing robotic projects on a shoestring 
budget

1.	 Make your projects talk and understand speech 
with Raspberry Pi.

2.	 Use standard webcam to make your projects 
see and enhance vision capabilities.

3.	 Full of simple, easy-to-understand instructions 
to bring your Raspberry Pi online for 
developing robotics projects.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/


Raspberry Pi Server Essentials
ISBN: 978-1-78328-469-6            Paperback: 116 pages

Transform your Raspberry Pi into a server for hosting 
websites, games, or even your Bitcoin network

1.	 Unlock the various possibilities of using 
Raspberry Pi as a server.

2.	 Configure a media center for your home or 
sharing with friends.

3.	 Connect to the Bitcoin network and manage 
your wallet.

Raspberry Pi Cookbook for 
Python Programmers
ISBN: 978-1-84969-662-3             Paperback: 402 pages

Over 50 easy-to-comprehend tailor-made recipes to 
get the most out of the Raspberry Pi and unleash its 
huge potential using Python

1.	 Install your first operating system, share files 
over the network, and run programs remotely.

2.	 Unleash the hidden potential of the  
Raspberry Pi's powerful Video Core IV 
graphics processor with your own hardware 
accelerated 3D graphics.

3.	 Discover how to create your own electronic 
circuits to interact with the Raspberry Pi.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Raspberry Pi
	Materials needed
	Power supply
	Storage
	Input
	Video
	Network

	Preparing the SD card
	Starting up the Raspberry Pi
	Using your Raspberry Pi
	The command line
	Updating and installing new software
	Other uses of the Raspberry Pi
	Troubleshooting common issues

	Summary

	Chapter 2: Animating with Scratch
	Scratch
	Hello world!
	Code tour
	Some more interesting movements
	Setting the scene
	Another way to animate

	Interactive animation
	Variables
	Movement
	Keeping count
	If-then-else

	Summary

	Chapter 3: Making Your Own Angry Birds Game
	Creating a character
	Creating a level
	Moving the character
	Initialization
	Moving the character with the keyboard
	Launching the character!
	Flight

	Adding physics
	Gravity
	Bouncing

	Ending the game
	Scoring
	Extensions
	Summary

	Chapter 4: Creating Random Insults
	Python
	Python programming

	The program we're going to use to generate phrases
	Lists
	Adding randomness
	Creating phrases

	Making mischief
	Dictionaries
	Loops
	Conditionals
	Functions

	Complete code listing
	Summary

	Chapter 5: Testing Your Speed
	Materials needed to make your own controller
	Creating the game controller
	The controller base
	Adding buttons
	Connecting to the Raspberry Pi

	Coding the game
	Random behavior
	Using the controller
	Adding a time limit
	Bringing it all together

	Complete code listing
	The keyboard version
	What's next?
	Summary

	Chapter 6: Making an Interactive 
Map of your City
	Hello world!
	Tkinter
	Writing the program

	Getting a map
	No Internet? No problem!
	Google Maps
	Generating the address
	Downloading an image
	Using an image

	Adding markers
	Detecting mouse clicks
	Reacting to mouse clicks

	Adding labels
	Basic labels
	Pop-up windows

	Code listing
	Extensions
	Layout
	Additional widgets
	Checkbutton
	Frame and LabelFrame
	Listbox
	Menu
	Menubutton
	Message
	OptionMenu
	Radiobutton
	Scale
	Spinbox


	Summary

	Chapter 7: Building Beats with Sonic Pi
	Sonic Pi
	Getting started with Sonic Pi
	Creating a tune
	New sounds
	A real tune
	Adding rhythm
	Bass line
	More fun

	Code listing
	Summary

	Index



